

PROFESSIONAL TOOLCASES

[^0]Uprated mico trainer

Digital speech Long-distance television
L. w-loss
coaxial cable

people with more important things to do.

The problen:logging telephone and expensive technician to operate it The solution: the new Racal Recorders Autostore. SIMPLICITY
With its automatic cassette-loading and fully Autostore can-quite literally -be operated by whoever happens to be around.
And it provides over 24 hours of unattended continuous recording on eight channels. VERSATILITY simultaneously, Autostore can form part of a new system - or fit just as easily into an existing one. And its uses vary from ambulance, fire, police and security appications to the recording of
financial transactions, conferences, oil installation communications and taxi services.

RACAL

RELIABILITY
integral in 4 or 8 channel versions and with Timesearch capability to enable rapid messag retrieval, Autostore is engineered to the very highest standards by the company which pioneered air traffic control recordin
For full details of Autostore send off the coupon today.

lam interested in recording my co

 lam interested in recording m,accurately and reliably. Please \square send me full details of Autostore
\square arrange for a demonstration at my own premises
Name
Position
Company
Address
 Racal Recorders Limited, Hardley Industrial Estate,
Hythe, Southampton

Front cover shows cross section of the new type
coaxial cable described
this issue superimpo this issue, superimposed o
a photographic montage a photographic montage
punched tape symbolising
the digital technigut the digital Itchniques in
other atricles. Photographer
Paul Brierley. other articles.
Paul Brierley.
in our next issue
Radio and the birth of the Universe. A review of the
significance of the 3 K significance of the 3 K cos
mic microwave background in the Big Bang cosmologi-
in cat theory.
Electronics on the road Broadly surveys electronis
ignition, anti-lock brakes cruise control, active sus
pension and other electron pension and other electroni
systems also social in
fluences on design.

Correlator for angles. Mea
suring technique suitable for suring technique suitable for automobile ignition system and other rotary mechan

wireless world

ELECTRONICS/TELEVISION/RADIO/AUDIO

JULY 1981 Vol 87 No 1546
29 Decline of the philosophical spirit
30 New development in h.f. coaxial cable
336809 evaluation system for $£ 100$ by R. Coates

38 World of amateur radio

| 39 Leap seconds
 by L. Essen |
| :---: | :---: |
| 41 Parallel tracking pickup arm modifications |
| by R. Cooper |

57 Wafer-scale integration
60 Sound synthesis using Walsh functions

65 Which way h.f. broadcast receivers?
by Y-C Heng and R. C. V. Macario
Frequency hopping radio/Broadcasting satellites report
73 The twins paradox of relativity
by I. McCausland

81 Electrical and mechanical units
by D.A. Bell

The Professionals

VALVES.SEMICONDUCTORS \& COMPONENTS for:-

Communications, Displays, Radar, Computer,
Audio etc.

Hall Electric Limited.

Electron House.
Cray Avenue. St. Mary Cray.
Orpington, Kent 8R5 30 J .
Telephone: Orpington 27099
Telex: 896141
MIN DEF APPROVAL 0529/0531

Electronic Brokers-Europe's Premier Used Computer Company offer sUPER LATIVE UG:D COW PUIER EOUPMENTAS NW CONDION

Electronic Brokers Limited 61/65 Kings Cross Road London WC1X 9LN England Telephone:01-2783461 Telex: 298694 Elebro G

WIRELESS WORLD JULY 1981

ww - 044 FOR FURTHER DETAILS

World-beating Oscilloscope Offers Electronic Brokers $\rightarrow \quad \begin{aligned} & 61165 \text { Kings Crossh } \\ & \text { LondonWC1X }\end{aligned}$ London WC1X 9LN.
wW - 053 FOR FURTHER DETALLS

CX80 colour MATRIX PRINTER

At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

Colour printout is quickly assimilated makes graphics more understandable tation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.
Dot Addressable +15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options.
The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.

NRDC-AMBISONIC

UHJ

SURROUND SOUND DECODER

 Complete kit, including licence fee $\mathbf{£ 5 7 . 7 0}+\mathrm{VAT}$ or ready built and tested $£ 76.95+\mathrm{VA}$

INTRUDER 1 Mk. 2 RADAR ALARM
With Home Office Type approval

 Complete kit $£ \mathbf{5 2 . 5 0}$ plus VAT, or ready built and tested $\mathbf{£ 6 8 . 5 0}$ plus VAT.

Wireless World Dolby noise reducer

Trademark of Dolby Laboratories Inc.

 $£ 218.00$ mains model
$€ 244.00$ mains battery. 8010A $31 / 2$ Digit LCD
DMM Same siec as DMM Same spec as
8012A plus a 10 Amp 8012A plus a 10 Amp
AC/DC current range but no low resistance
range.
f167.00 mains model $£ 167.00$ mains model
f193.00 mains battery. $8024 \mathrm{~A} 31 / 2$ Digit hand
held hold Level Deetector
and continuity tester. and continuity tester.
DC volts $200 \mathrm{mV}-1 \mathrm{KV}$, $100 \mu \mathrm{~V}$ resolution. A . AC vits 200 VV - $-750 \mathrm{~V}, 100 \mu \mathrm{~V}$ resolution. $\mathrm{DC} / \mathrm{AC}$ current 2
$1 \mu \mathrm{~A}$ resolution. Resistance $200 \Omega-20 \mathrm{M} \Omega, 0.1 /$ resolution.
 Level detector operates around +0.8 V reference. Audio tone o
level and continuity, $£ 155.00$, carrying case $£ 8.00$ extra.

Electronic Brokers
 WW - 054 FOR FUCes do not include arrage orv

DOUGLAS TRANSFORMERS FROM TITAN
 NEW FRANCHISE AT FANTASTIC PRICES - EX STOCK

IMO can now offer you the high quality
and reliability that vou have come to expect in omron rearys, in their new series of low prof
printed circuit mounting subminiatures. Trinted circuit mountitng subminiatures. interface, communication and output application
 onto printed circuit boards. There are low co
types like the LC-NE where price is major
considieration. and high onsidieration, and high reiliability types like
he LZNs w with goldc-clan, bilifurcated crossbar
contacts and card liftoff
 With contact ratings up to 10A and 240va styles and sizes, and up to four changeover
contacts per relay, this range from imo offer
you real design flexibililty. All usual $A C$ and $D C$
coil voltages are available from stock.

complete reliability y in electronic circultry youllin need relalays at the right price and
the highest quality. In a word, omron-from IMO

IMO

Much more
thanyou may kno Mo Precision Controls Lta.

New! Sinclair ZX81 Personal Computer. Kit: $£ 49 .{ }^{95}$ complete

Reach advanced
computer comprehension in a few absorbing hours

1980 saw a genuine breakthrough-the Sinclair ZX80, world's first complete personal computer for under £100. At
$£ 99.95$, the ZX80 offered a specification unchallenged at the price Over 50,000 were sold, and the ZX80 won virtually universal praise from omputer professionals.
Now the
Now the Sinclair lead is increased
or just $£ 69.95$, the new Sinclair 7×81 offers even more advanced computer facilities at an even lower price. And the ZX81 kit means an even bigger saving. At £ 49.95 it costs almos
40% less than the $Z \times 80$ kit! Lower price: higher capability With the ZX81, it's just as simple to ZX81 packs even greater working capability than the ZX80.
It uses the same micro-processor, but incorporates a new, more powerful of the computer. This chip works in decimals, handles logs and trig allow you to plot graphs, and builds up animated displays.
And the ZX81 incorporates other operation refinements-the facility to
oad and save named programs on cassette, for example, or to select a program off a cassette through the eyboard.
Higher specification, lower pricehow's it done?
Quite simply, by design. The ZX80 educed the chips in a working compute the 21 to 4 !
The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip
replaces 18 chips from the $\mathrm{XX} 80!$

Proven micro-processor, new 8KBASIC ROM, RAM-and unique new master chip.

If you own a Sinclair ZX80...
The new 8K BASIC ROM used in the Sinclair ZX81 is available to ZX80 (Complete with new keyboard template and operating manual.)
With the exception of animated
graphics, all the advanced features of graphics, all the advanced features
the ZX81 are now available on your ZX80-including the ability to drive the Sinclair ZX Printer.

Coming soonthe IX Printer.

Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumerics across 32 columns, and highly sophisti-
cated graphics. Special features include cated graphics. Special features include
COPY, which prints out exactly what is on the whole TV screen without the need for further instructions. The ZX Printer will be available in Summer 1981, at around £50-watch this space!

16K-BYTE RAM pack for massive add-on memory.
Designed as a complete module to fit pack simply plugs into the existing expansion port at the rear of the com puter to multiply your data/program storage by $16!$
Use it for 10

Use it for long and complex procosts as little as half the price of competitive additional memory.

How to order your ZX81 BYPHONE-Access or Barclaycard attention 24 hours a day ev for personal BY FREEPOST - use the no-stampneeded coupon below. You can pay by cheque, posta
Barclaycard.
Barclaycard.
EITHER WAY
days for delivery. And there's a 14 -day money-back option, of course. We want you to be satisfied beyond doubt-and
we have no doubt that you will be.

WIRELESS WORLD JULY 1981

MICROCOMPUTER COMPONENTS

CEEVICE PRICE	lidevice	PRICE	loEvige	Ice
cpus	${ }^{774} 1.514$	0.51	${ }_{\text {cmos }}$	
${ }_{68800}^{6502}$. ${ }_{\text {3.82 }}$	${ }^{7445525}$	0.13	4001	${ }_{0}^{0.12}$
${ }_{\text {cker }}^{6802}$	${ }^{7445252}$	0.15	${ }_{4002}^{4002}$	(0.12
${ }_{68099}^{6803}$	74.4526	0.19	4007	0.14
	${ }_{7}^{7414527}$	0.15	- 4008	${ }_{0.31}^{0.61}$
${ }_{\text {880ACPU }}^{88 \mathrm{CPO}}$	744530	0.14	4010	0.37
SUPPORT CHIPS	${ }^{7} 74.4533$	${ }_{0}^{0.17}$	4012	${ }_{0}^{0.19}$
	${ }^{7} 74415338$	0.17	${ }_{4014}$	${ }_{0}^{0.34}$
	741540	0.14	4015	0.64
	${ }_{7}^{7415454}$	0.42	${ }^{4017}$	0.54
${ }_{688888}{ }^{688}$	${ }^{741548}$	0.70	4018	${ }_{0}^{0.59}$
		O.14	${ }_{\text {cta }}^{4020}$	(e.tick
68871ATT 6885 P	${ }_{7}^{7415555}$	${ }^{0.15}$	${ }^{40021} 4$	${ }_{0}^{0.68}$
${ }_{6880}^{6880}$	${ }^{741573}$	0.22	4023	${ }_{0}^{0.39}$
${ }_{8212}^{687}$	${ }^{744555}$	0.30	${ }_{4025}^{4025}$	0.15
8216 8224	${ }^{744575}$	0.25	${ }_{4027}^{4026}$	${ }_{\text {l }}$
	${ }^{7} 7415885$	${ }^{0.54}$	${ }^{4028}$	${ }_{0}^{0.64}$
${ }_{8}^{8251}$	${ }_{7} 74458585$	0.18	${ }^{4033}$	
${ }_{8255}^{825}$	74.4590	0.36	4034	1.60
${ }_{\text {l }}^{\text {l }}$	${ }_{7} 7415959$	- 0.80	${ }^{4036}$:25
	${ }^{744593}$	${ }_{0}^{0.38}$	${ }_{4}^{4039}$	2.45
${ }_{\text {Z }}^{\text {z }}$	741515199	${ }_{0}^{0.26}$	4041	${ }_{0}^{0.70}$
	74415113	${ }_{0}$	4043	${ }_{0} 0.62$
	${ }^{2415124}$		${ }_{4045}^{4045}$	
${ }^{7808510.1}$ Sill	${ }_{74} 7415123$	0.45	${ }^{4046}$	${ }_{0}^{0.75}$
z80AS 10.0	7415125	0.29	4048	0.44
Z80A S0-2	${ }^{74151533}$	${ }_{0} 0.51$	${ }^{4050}$	(0.27
Memories	${ }_{74415138}$	0.40	${ }_{4}^{4052}$	${ }_{0}^{0.62}$
${ }_{2102}^{2102}$	7415139		${ }^{4053}$	
2114 200ns low power ${ }_{1,35}$	7415148	${ }_{1.13}$	${ }^{4055}$	1.00
	7441515	0.35		
	74LIS155	0.50	${ }^{4066}$	${ }_{0}^{0.38}$
${ }_{\text {4, }}$	${ }^{741515157}$	${ }_{0}^{0.36}$	${ }_{4068}^{4068}$	
	. 744515158	0.40	4069	${ }_{0}^{0.15}$
REGULATORS	${ }^{7} 4$	0.43	4071	
7805 7812 0.55 805	$741516{ }^{\text {c }}$	0.43	${ }_{4}^{4072}$	${ }_{0}^{0.20}$
7995 7912	77415164	0.51	4075	0.20
	7441173	0.77	4077	${ }_{0} .23$
	74L15174	0.78	${ }_{4}^{4078}$	${ }_{0}^{0.20}$
${ }_{6845} 111.72$		${ }_{1.50}^{0.50}$	${ }_{4082}^{4081}$	0.20
	${ }_{7}^{74 L 515190}$	${ }_{0.61}^{0.61}$	${ }^{40885}$	${ }_{0.56}^{0.56}$
${ }_{81}^{81 \text { LS96 }}$ (120	${ }^{744151992}$	0.69	4093	${ }^{0.43^{\prime}}$
811597 811598	${ }_{7} 7415151939$	${ }_{0}^{0.42}$	- 4507	${ }_{0}$
${ }_{\text {8T2 } 26 A}$	${ }^{7} 71415195$	0.42	4508	2.25
	${ }_{741515197}$	0.68	${ }^{4511}$	0.51
	${ }_{7}^{74152221529}$	${ }_{\text {der }}^{0.04}$	${ }_{4514}^{4512}$	
	74.5241	1.15	4515	${ }_{2}^{2.38}$
${ }_{\text {AY }-3-1015}$ (or	${ }_{7}^{741524243}$	0.85	${ }^{4518}$	0.72
		${ }_{1.21}^{0.24}$	4519	${ }_{0}^{0.56}$
	${ }_{7} 741524$	0.41	${ }_{4521}^{4522}$	1.65
${ }_{\text {MC14411 }}$		${ }_{0} 0.74$		
MC14412 7.99	7745	0.46	${ }^{4527}$	1.00
DAAA CONVERTERS ${ }^{\text {PNa }}$	${ }_{7445255}^{74525}$	${ }_{0}^{0.57}$	${ }^{4532}$	0.90
Z $\mathrm{CNa26E}$ E	7445258	${ }^{0.15}$	近 4543	1.15
	${ }^{744.52561}$	3.12	4535	2.50
	744.15273	${ }_{0} 0.97$	${ }^{4556}$	
2N033	74415279	0.35	4585	1.05
	7445	0.60	Crystal	
7415 SERIIES	7445293	${ }^{0.53}$		1.80
7414500 0.11	${ }_{74 \text { [15366 }}$	0.38	Dil sockets	
744L501 741502 0.15 0.14	${ }_{744153568}$	0.38		
741503 741504 0.14 0.13	744 ST373	0.79	14	${ }^{0.088}$
744.L505	${ }_{7415375}$	0.50	${ }^{18}$	0.14
741508 741509 0.14 0.15	${ }_{7441537378}$	0.73	${ }_{22}^{20}$	0.116 0.18
744510	7415379	0.56	${ }_{28}^{24}$	${ }^{0.20}$
74.1512	${ }_{74453590}$	${ }_{0} 0.68$	${ }_{40}$	${ }_{0} 0.32$
74LL13 0.29	7415393	0.61		

MIDWICH COMPUTER CO. LTD

The EP4000 is not just an EPROM Programmer . . .

Not only does the
EP4000 copy, store, program and duplicate the 2704/2708/2716(3) /2508/2758/2716/2516/2532 and 2732 EPROMs without personality cards or modules, but also includes a video output for memory map display to make the powerful editing facilities really useful (and this is in addition to the in-built LED display or stand-alone use), bu it also comes as standard with comprehensive
input/output - RS232, 20 mA loop, TTL parallel handshake, cassette, printer and direct memory access. Now the programming power can be expanded with our range of add-on accessories listed below.

. . . but also a Real Time EPROM Emulator . . .

Real time EPROM Emulation is the second major function of the EP4000. This facility allows the machine to directly replace your incircuit EPROMs during the process of program evelopment - the EP4000 can be configured to look like any EPROM it is capable of programming. The press of a button isolates
the external system so that data changes, entries, editing and downloading can be implemented. When the program is complete and working, the simulator cable can be replaced by an EPROM programmed by the EP4000.

. . . with real technical back-up and service.

The EP4000 comes with a technical manual escribing every aspect of the machine - its purpose, its use, and how to use it. It also has a ection describing the whole process of program development
And if you ever need technical help or advice, you can now dial direct to our technical department for instant attention - Tel. (0803) 863380.

Finally, a full range of accessories in now
available - these include Bipolar programming
modules, multi-EPROM simulator adaptors, buffer pods, EPROM Erasers, video monitors 2764/2564 programming satellite, printer and production programmers. The EP4000 is exstock. Price - $5545+$ VAT $(+£ 12$ for DATAPOST delivery). Telephone, telex, write or call for full data and Distributor list, or place your order for immediate despatch - Overseas customers, please telex or write for quotation and terms. Agents in some countries, and distributors in Britain required.

G.P. Industrial Electronics Ltd.

Unit 6, Totnes Industrial Estate Totnes, Devon TQ9 5XL
Tel. Sales (0803) 863360. Technical (0803) 863380
Telex: 42596 GPELEC

OR: UPOMII: Con:amon.

Introducing the first $41 / 2$ digit handheld DMM in a market that's been the exclusive domain of $31 / 2$ digit models. Until now .
The new Keithley 135.
mining outstanding specification with impeccable performance. And confirming Keithley's position as a major innovator in D.M.M. technology:
O 0.05% DCV accuracy

- Five functions

Low battery indicator
Full overload protection: 1000 V max DCV 1000 V peak ACV, 300V max Ohms - 10 amp range

ACV bandwidh $t 020 \mathrm{kHz}$
Need a bench unit? Then take a look at the new Keithley 176 . Five functions, $41 / 2$ digits, $\pm 0.05 \%$. DCV accuracy, and full function annunciators. Built up to a standard - not down to a price. Yet the 176 gives quality, $4 \frac{1}{2}$ digit performance at a cost some $31 / 2$ digit manufacturers would dearly love to match.
To find out more, fill in the coupon. And see what keeps Keithley one step ahead.

IT35 DIEITAL MULTIMETER 1.2345

KEITHLEY

Keithley Instruments Lid
1 Boulton Road Reading Berkshire RG2 ONL 1 Bouiton Road
Telephone (073
Telex 847047

${ }^{20}$
 cuncosts cund spesd mroulse shoorina

AFIT 1500 Automatic Fault Isolation Tester A low cost complete PCB tester designed for quality control or service/repair work. Its powerful selfcontained microprocessor provides rapid in-circuit fault olation on complex digital PCBs.

MTL's comprehensive Programming Service will provide all the expertise required. 98% confidence Solves 'wired or' problems.

MTL Microtesting Limited 1-15 Butts Road, Alton, Hamps

ww - 019 FOR FURTHER DETAILS
sonimagl9
XIX INTERNATIONAL IMAGE, SOUND AND ELECTRONCS SHOW

TO SEE AND HEAR

4 LARGE EXHIBITION PALACES DEALING WITH

BARCELONA (SPAIN) 28th SEPTEMBER - 4th OCTOBER 1981
 RBERMA

fivenewsenses

FOR YOUR MIGRO

IEEE STANDARD A-D CONVERTERS D-A CONVERTERS RELAY UNITS APPLEINTERFACES

Cantonea Second User Test Equi为

CASTLE ASSOCIATES
CSIBAA Sound Level Meerer $\&$ Caibrator
CEL
 BLUKE

 EWLETT PACKARD

TFIB13 UNiversal LCR
WAYNE KRR
B224LCR
Red

B601 LCR Bridge R F O OSC $\&$ Det not ing
COMMS $\&$ CABLE TEST
COMMS \& CAB
EQUIPMENT
EOUIPME
CHAS
35A Fild
A Field Strength Meter $20-850 \mathrm{MHz}$

WIE ARE BROAD LINE DISTRIBUTORS FOR SIEMENS \& THOMSON CSF WITH FULL INDUSTRIAL
FRANCHISES AND CONSUMER FRANCHISES FOR:MULLARD, NATIONAL AND TEXAS.
WE ARE ESPECIALLY STRONG ON ITEMS LISTED AND INVITE YOUR ENQUIRIES. PLEASE SEND
FOR STOCK LIST AND CLEARANCE LIST OF FOR STOCK LIST AND CLEARAN
SEMICONDUCTORS. COME TO US FOR YOUR REQUIREMENTS OF SIEMENS CAPACITORS • SWITCHES \& OPTO COMPONENTS.
T.T.L. •C.M.O.S. • BAHCO TOOLS SINCLAIR TESTGEAR EADER INSTRUMENTS PRESENSITISED LIGHT SENSITIVE PRINTED CIRCUIT BOARDS 4 SIZES BOTH DOUBLE \& SINGLE.
A. MARSHALL (LONDON) LTD

KINGSGATE HOUSE, KINGSGATE PĹACE, LONDON NW6 4TA. Industrial Sales: 01-328 1009 Mail Order: 01-624 8582 24hr service Retail branches: London • Glasgow. Bristo

Carton'sy Cartonse SIGNAL ANALYSI EQUIPMEN
EARCON
TF2300A Mod Me

 GENERATORS
 1362 Generatar 220.920 MHz
GGOLD ADVANE
SG7 Geneatato 5 HZ 200
375
85

Marshall's

PF2UB UHF Radio Telephone - Porrab
STC
T212
PA No

1910125 MHz 7 Digit Counter Time

1920 A 141250 MHz othem ise as 19
HEWLETT PACKARD

10590 A Adape
RACAL

SYSTRON Digit Connter
SOS

DIGITAL TESTING EQUIPMENT
DIGITAL TESTING EQUIPME
HEWLETT PACKARD

TTEKTRONIX
Full details and specification ${ }^{1150}$ ine

HEWLETT PACKARD

Carston Electronics Ltd 01-2675311 Shirley House, 27 Camden Road,
Lelex: 23920 . SPECIFIC NEEDS. Hours Monday to Friday 9.00 am- 5.30 pm (4.30 pm Fridays). Prices exclude delivery and
ww - 013 FOR FURTHER DETALS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for days delivery. Other Ranges and special scales can be made to order.

Full Information from:

HARRIS ELECTRONICS (London) 138 GRAYS INN ROAD. W.C. 1 Phone: $01 / 837 / 7937$ ww - 033 FOR FURTHER DETAILS

WW - 041 FOR FURTHER DETAILS

New Line of Wave Solderable Heat Sinks

Thermalloy International offers 35 different styles of wave solderable heat sinks for TO-3 and plastic packages. Styles Solde board mounted stampings and flat sided extrusions. Solderable Stud ${ }^{\text {TM }}$ Heat Sinks allow the heat sink/device to
be preassembled and treated as a single component on your be preassembled and treated as a single component on your production line. It is dropped into plated-thru holes in the P.C Board and wave soldering and extra inspections to reduce your production steps by 50%. All work can now be done from one side of the board, and less mounting hardware is required.

For product samples and full technical literature
contact MCP Electronics.

WW - 026 FOR FURTHER DETALLS

Voltstab. The simple answer to your current problem.

If you are experiencing random faults and failures in your
microprocessor-based equipment, they are probably caused microprocessor-based equipment, they are probably caused
by voltage irregularities. Even dedicated supplies may not be by voltage irregularitites. Even dedicated supplies may not
the answer- they will still suffer from momentary voltage
transients and power supply breaks. transients and power supply breaks.
Galatrek have the simple answer A plug-in VOL TSTAB Galatrek have the simple answer. A plug-in voLTSTAB economical, the Galatrek VOLTSTAB offers you:

- Output stabilisation to $\pm 1 \%$ from mains input fluctuations
- Transient attentuation
- Momentary power back-up

Available ex-stock from regional stockists in a choice of power
ratings from 250 VA to 5 kVA , the Galatrek VO T TSTAB will ratings from 250 VA to 5 kVA , the Galatrek VOLTSTAB will
keep your sensitive electronic equipment running smoothly Both the factory and the regional stockists throughout the UK will assist you technically to ensure you match the VOLTSTAB
unit exactly to your requirement. unit exactly to your requirements.
Mr R Kolifiler, Galatrek International, Scotland Street, Llarrwst, nr Colwyn Bay, Gwynedd LL26 OAL, North Wales, Great Br
Tel No: 0429-640311641298 Night Service: 0492-30592
Telex: 617114 A/B Galahu

Please send me the 18 page Galatrek VOLTSTAB
catalogue, which includes details of your Mains Filters
and Standby Power Supplies.
Name:
Position:
Company:
Address:
$\overline{\text { Trade } \square \text { OEM } \square \text { (please tick where appropriate) } \quad \text { ww }}$

MULTI-LED

 ARRAYS

OUR
OFF THE SHELF RANGE OFFERS
any combination and sequence of Red (GaP), Green(GaP) or Yellow ($\mathrm{GaAsP} / \mathrm{GaP}$) colours incorporated in one array,
...fully end-stackable, 2, 3, 4 or 5 segment options thereby enabling displays encompassing any number of segments to be created,
...black bezels as standard with white bezels to special order,
...push-fit mounting into correctly dimensioned panel cut-out,
\ldots wide operating temperature range of $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.

> So if you are into TREND INDICATORS BAR GRAPHS or EVENT DISPLAYS Look at our

MULTI-LED ARRAYS

Our prices won't make your eyes water Zaerix Electronics Limited 46 Westbourne Grove, London W2 5SF, England
wW - 014 FOR FURTHER DETAILS

For personal service visit one of our stores.
Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads. There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

* Very large percentage of our stock lines in stock * All prices include VAT
* Large range of all the most useful components * First class reply paid envelope with every order * Quality components-no rejects-no re-marks * Competitive prices
* Your money is safe with a reputable company On price, service, stock, quality and security it makes On price, service, stock, quality and security it makes
sense now more than evere to make niminplin your first choice for components every time!

 Post this coupon now. Please send me a copy of your 320 page catalogue. I enclose $£ 1.25$
(incl. 25 p р\&p). If a am not completely satisfied 1 may ceturn the (hation opetop) in am not completely satisfied I may return the catal ogue to you and have my money féunded. If y.
U.K. send E1.68 or 12 International Reply Coupons.

All mail to: P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 554155 Sales: (0702) 552911 Ww - 017 FOR FURTHER DETAILS

Preciselyontime.
 Giving you an exceptionally accu-

The Model 4401 Frequency Standard y Global Specialties: for precision has come.
The heart of the 4401 Frequency Standard is a unique 10 MHz precision emperature controlled crystal oven sacy of $+0.5 \mathrm{ppm}(+0.00005 \%$ rom 0 to $40^{\circ} \mathrm{C}$ it offers exceptiona long term stability-aging 1 ppm pe
year. And it's directly traceable to the National Bureau of Standards via factory calibration to WWVB.

Two short-circuit protected 50-ohm BNC outputs are capable o driving 10 TTL loads into matched
50Ω lines, providing square waves from 0.1 Hz to 10 MHz in 9 decade steps, with LED indication of the decade in use. And a frequency multiplier switch (x, $2 \times$, sx) enable in each decade.
Our new 4401 Frequency Stand-
ard sets a new value standard. rate, stable source for oscilloscope
timebase calibration frequency counter calibration, laboratory timekeeping and other high-precision timing applications... so whatever your application, the Global 4401
Frequency Standard is precisely frequency Standard is precisely
f 118 .
 150 Watts ne var

G.S.C. (UK) Limited, Dept. 7 R
G.S.C. (UK) Limited, Dept. Shire Hill Industrial Estate, Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex CB11 3AQ. Telephone: Saffron Walden (0799) 21682. Telex: 817477.

WW - 045 FOR FURTHER DETAILS

The Sound of the Professionals.
SSHUF
Shure Electronics Limited Eccleston Road Maidstone ME15 6AL Maidstone ME 156 AU
Telephone: Maidstone (0622) 5988
new
51V85 몽) [[E G I 50 UND
brings a new dimension to a hand-held condenser microphone

This new high technology Shure microphone will change the way people think of condenser microphones. The
SM85 is designed especially for on-stage, hand-held use Its sound is unique - far more tailored to the special needs of the vocalist: sizzling highs and a shaped mid-range for
superb vocal reproduction, and a gentle bass rollo that superb vocal reproduction, and a gentle bass roiloif that
minimizes handling noise and "boominess" associated with close-up use. Ulitra-low distortion electronics make the SM85 highly immune to stray hum fields. An integral, dual-
density foam windscreen provides built-in pop protection. density foam windscreen provides bullt-in pop protection. What's more, the SM85 Condenser Microphone mu
pass the same ruggedness and dependability tesis pass the same ruggedness and dependability tests
required of Shure dynamic microphones. As a result, required of Shure dynamic microphones. As a result,
SM85 sets a new standard of reliability for hand-held condenser microphones.
The SM85 is extremely lightweight, beautifully balanced -it feels good, looks good on-stage, on-camera. on-tour. TECH Sound, or write to us (ask for AL664) for full detalis.

SM85

Cardioid Condenser Hand-Held
Professional Microphone

Editor:
TOM IVALL, MII.I.R.R.
Deputy Editor:
PHILIP DARIINGTON ${ }_{0} 01-6613039$
Technical Editor:
GEOFF SHORTERB. B. GEOFF SHORTER, B.SC
$01-6613500 \times 3590$
Projects Editor: Proiects Editor
MIKE SAGIN ${ }_{01-661} 3500 \times 3588$ Communications Editor:
MARTIN ECCLES MARTIN ECCLES
$01-6613500 \times 3589$ News Editor:
DAVID COBIE
$01-35003587$
Drawing Office Manager
ROGER GOODMAN
Technical Illustr
BETTY PALMER
BETTY PALMER
Advertisement Manager
BOB NIBBS, A.C.I.I.
${ }_{0}{ }^{\text {BOB }}$-661 3130
DAVID DISLEY
$01-6613500 \times 3593$
BARBARA MILLER
01-661 3500×3592
HARRY AIKEN
HARRY AIKEN
$061-8728861$
Midland Sales
BASILMcGOWAN
BASIL McGOW
$021-3564838$
Classified Manager:
BRIAN DURRAN
$01-6613106$
JAYNE PALMER
$01-6613033$
BRIAN BANNISTER (Make-up and copy)
$01-6613500 \times 3561$
Publishing Director:

wireless world

Decline of the philosophical spirit

Ampère's Théorie mathématique des phénomènes êlectro-dynamiques (1826) is still worth reading. It is known as the principal founding source of ust as instructive. It begins with an extensive homage to 'Newtonian philosophy', and continues with a long mixture of physical theory, mathematic
analyses and reports of experimental analyses and reports of experimental
procedures. Ampère sought not mere procedures. Ampere sought not merely effects; he wanted to find out how the phenomena actually occurred. Indeed, in the naive tradition sometimes followed at the time, he thought of his theory
truth, 'uniquement déduite de l'expérience', to complete the title of his book.
Ampère is remembered now only for this work, but in fact it was a small part of his output. He was a polymath, whose
activities were unified by his philosophical activities were unified by his philosophical
spirit. This spirit informed all his writings and came to its zenith in his Essai sur la philosophie des sciences (1834). But he was an outsider in philosophical thought, fo
the 1830 s also saw the rise of positivism the 1830 salso saw the rise of positivism in
the hands of some of his former students a the Ecole Polytechnique: Auguste Comte, and engineer-scientists such as Dupin and Poncelet. Associated closely at that tin with educational and social causes, positivism became one of the dominant
philosophies of the 19 th century and has maintained its influence, directly and maintained iss influence, directly and without metaphysics; rejection of abstract intellectual objects; even a lack of attention physics. It is a strange contrast to read Ampère's Essai, with its Kantian concern with phenomena and their causes, with man's knowledge and his cognitive power to know.
power to know.
It was through movements such as positivism that philosophy and science became separated. Positivism and it cousins (mechanism, materialism, instrumentalism, behaviourism, and so on) much as ignore them. Yet scientists accept
positivist tenets without much thought: facts are facts are facts; theories are useful only for predicting new facts; mathema
is just a fiction which in principle has nothing to do with physical reality; the aim of science is consensus (as a noted FRS contentedly put it on television recently);
the history of science is bunk - and, the history of science is bunk - and,
above all, philosophising about science time-wasting nonsense. At the same time philosophy itself has become an enclosed profession, largely concerned with footling 'puzzles' in ordinary language; its practitioners rarely know anything beyond colleagues. There are exceptional figure in the communities of both science and philosophy; but they stand out as such, often nervously.
Meanwhile the real world seems to have ren es the same as it was in Ampère's day, especially with regard to the phenomena studied in physics. Thus the objects of scientific study remain basically unchanged, and so does the need for philosophical as well as technical skill. We of electricity and magnetism than did Ampère and his contemporaries; but w no longer bring to our theoretical studies the sensitivity to philosophical questions which Ampère, and others of his time,
could show. He and his contemporaries were not really scientists in the way that we understand the term; they often called themselves 'natural philosophers', enquirers into the nature around them and into the powers of man to think up theories optimistic naiveties such as the allegedly immediate deduction of theories from facts; but they did not succumb to our reflex dismissals of the non-experimental and our inattention to the place of mathematics in scientificked not only Àmpère but also his contemporaries such as Faraday and Ohm, and successors like Kelvin and Maxwell, have faded; the traditions of natural pinilosophy
been broken; reflection has given way to 'research'.

New development in h.f. coaxial cable

Structure offers lower losses and improved power handling by S. G. Carter, M.Sc., Cable and Wireless and H. M. Barlow, F.R.S., University College, London

Recently it has become possible to make a high-frequency cable which is coaxial design and waveguides, a type of structure that exhibits much lower losses than is usual when bas on attenuation per unit of crosssectional area. This cable transmits in
the dipole mode, well known for its application in optical fibres, and consists of an outer screen, as in the ordinary coaxial cable, with a group of carailier wires forming a concentric place of the more usual solid metal wire or tube.
At very low frequencies the guided transnission of telecommunication signals over single wire, using an earth return, or by pairs of parallel wires in space. However, as the frequency is increased the lack of electrical balance of the wires and the un-
restricted spread of the field from them restricted spread of the field from them
begins to present interference problems and a change has to be made to a screened ransmission system. Up to the present, this has almost invariably taken the form of either TEM transmission in a coaxial waveguide. Both of these arrangements have their own advantages and disadvantages but, as expected, signal attenuation has always been a maior factor influencing system design. Any reduction of attenua-
tion can lead to lower transmitted powers, small cables, an improved system noise performance and increased repeater spacing, either separately or in combination, ccording to design.
In the structure shown in Fig. 1, the currents set up the inner multi-wire

structure are such as to provide for electric | $\begin{array}{l}\text { Continuous } \\ \text { netal screen }\end{array}$ | $\begin{array}{l}\text { Inner structure } \\ \text { consistinc of }\end{array}$ |
| :--- | :--- |

Fig. 1. Cross-sectional view of basic form of
field across a diameter as well as a circumferential field: thus the arrangement supports a wave in the dipole mode. As a rule, a large part of the transmitted power
is located within the wire-grid structure is located within the wire-grid structure
while, outside the grid, the field decays rapidly. In these circumstances the outer
metal tube functions primarily as a screen and normally only produces a small perturbation of the field, even when its radius is reduced to about double that of the inner wire grid. Consideration of the operating conditions show that the inner multi-wire
structure at u.h.f. behaves very much like structure at u.h.f. behaves very much like
the optical fibre at infra-red frequencies, where transmission is in the same HE_{11} mode with the power largely confined to he core and a rapid decay of field in the cladding. Further, like the large corecable can in principle support many different modes of propagation (as many as here are separate conductors) but, in practice, provision is made to ensure that only the lowest order dipole mode is car-
ried. There is, however, one significant distinction between the behaviour of multi-conductor coaxial cable and optical fibre. Any attempt to screen a dielectric od transmitting in the dipole mode in the 1.h.f. region results in destruction of the
field and inhibition of propagation in that mode. This is because the boundary condiions on the inside of the screen cannot be satisfied at such frequencies. The wiregrid coaxial cable suffers no such limision in conventional coaxial cables (and unlike tubular metal waveguides), the di-pole-mode cable does not exhibit frequency cut-off and, in principle, can herefore be operated at any part of the the high u.h.f. and s.h.f. regions that the losses are so much lower than those obtainable with current-day coaxial cables.

Cable structure

While Fig. 1 shows the basic structure of the dipole-mode cable, comprising a number of parallel wires to form a cylindrical grid, coaxial with an outer metal screen, it is of course necessary to support
the inner conductors and separate them from the outer. Although regularly spaced disc insulators or beads may, when the cable is straight, keep the wires of the the amount of dielectric employed, the
need for a flexible cable tends to demand a continuous dielectric tube to support the structure have been developed experimentally and these are illustrated in Fig. 2. The polythene tube is extruded to include the group of parallel wires attached either
to the outside or the inside of the tube and to the outside or the inside of the tube and
this inner structure is then, as a whole, located within the outer screen by one of the methods employed in the construction of ordinary low-loss coaxial cables; for example, a dielectric membrane helixed
around the inner or, alternatively, a cartaround the inner or, alternatively, a cart-
wheel-type dielectric spacer. For experimental purposes the method chosen was to support the inner structure by thin p.t.f.e. discs with a hole in the centre through which the inner cable structure was in-
serted. These supports were spaced approximately every 8 cm .
The cable attenuation is dependent not only on the number of wires included in the inner structure but also on their diameter. In general, the loss decreases as the
number of wires increases and as more of the circumference of the inner is covered by metal. However, capacitive circumferencial current is necessary for HE_{11} mode propagation and consequently the wires must always be spaced far enough apart to
maintain this dipole mode at an adequate power level. Clearly, there are practical problems in fabricating a cable with a large number of very thin wires or strips of metal and therefore the experimental work was limited to structures having not more

Cable terminations

Instruments and components available today for measurements all employ conven-
ional, coaxial connectors and cables, so that the introduction of this new form of multi-conductor, dipole-mode cable requires special arrangements. Not only is a connector required to maintain the conti-
nuity of the multi-wire system, but ransducers are necessary to convert the TEM waves of the supply to dipole-mode configuration prior to launching the wave on the cable. This operation has to be carried out with minimum loss and ove
wide a band of frequencies as possible. One method of launching into a dip mode cable is to take the output from a conventional coaxial supply and, using a power divider, split it into as many parts as input is adjusted so that when superimposed they comprise the required dipole mode field distribution. This has been rried experimentally but it was found to be difficult to establish and maintain the
precise amplitudes and phases required. precise amplitudes and phases required. the required dipole mode from a TEM source is to use either electric or magnetic coupling into the multi-conductor cable. In general, transverse electric field coupling as shown in Fig. 3 gives more effective
transfer of power but this tends to be at the expense of bandwidth when .compared with the corresponding magnetic coupling shown in Fig. 4. In the electric field coupler (Fig. 3) a transverse wire fed from mately a quarter of the signal wavelength from a short-circuit termination formed by connecting together all the inner wires and the outer screen. Matching from the char-
cteristic impedance of the coaxial feed to the dipole mode cable is obtained by tons shown in the diagram. The magnetic launcher (Fig. 4) is typified by a small loop of wire inserted into the end of the dipole mode cable and extending a short distance tion matching unit is used to transform the impedance of the coaxial input down to the very low impedance of the loop. Table 1 shows the loss and bandwidths achieved in practice with these two different types of

Cable attenuation

Particular interest in dipole mode cables centres on the fact that their attenuation has been shown to be considerably lower coaxial cable. furthermore, the dipolemode cable has no cut-off frequency and, unlike a hollow metal waveguide, can be used satisfactorily at quite low frequencies.

Fig. 2. Two different forms of dipole-mode cable.

Fig. 3. TEM-to-dipole-mode transducer, using transverse-electric field coupling.

Atenuation measurements having be made at various frequencies on two different dipole mode cable structures, both mounted inside a 2.22 cm -diameter copper tube. A simple substitution method was employed, consisting of a direct compari-
son between the loss of a known length of son between the loss of a known length of
the cable with that of a back-to-back connexion between two dipole-mode launchers. Joints were made in the cable by employing short, thin, brass tubes to interconnect the individual wires and a outer.
outer.
The measured losses are shown in Fig. 5 and, while these display the very low attenuation obtainable, a more interesting result is a direct comparison between dipole
mode and TEM losses in the same cable. mode and TEM losses in the same cable.
The dipole-mode cable can be made to operate in the TEM mode, simply by joining them together, at each end, all the inner structure wires and then feeding between them jointly and the outer, as in a TEM transmission of an inner structure, comprising parallel wires rather than a solid metal conductor, only causes between 7% and 10% increase in attenuation. The results of such a comparison made at

- Cable type I in dipole -mode propogation
- Cable type 1 in TEM mode propagation

Fig. 5. Measured losses of multi-conductor Fig. 5. Measured losses of multi-condu
cable in dipole-mode and TEM-mode
transmission-min transmission.

Table 1. Comparison of available bandwidth and losses for dipole-m launchers shown in Figs. 3 and 4 .

Launcher type	Bandwidth (betwe en 3dB points) MHz	Nominal loss (EM to dipole mode) dB
Magnetic coupling (see Fig. 4)	500	3.5
Electric coupling (see Fig. 3)	150	0.26

frequency of 3.3 GHz on five different forms of cable are shown in Table 2. From using an inner structure with a radius of about half that of the outer the losses are
reduced to about 50% of those of the same reduced to about 50% of those of the same
cable operated in the TEM mode

Practical applications
Optical-fibre transmission seems destined to take a large share of long-distance tele-
communications and in due course to cospmace many of the coaxial line systems. displace many of the coaxial line systems.
However, there will always be a large number of circumstances in which conventional coaxial cable remains applicable and
it is in these areas that the dipole-mode cable could find a useful place. The reduced attentuation characteristics of this cable reflects the more uniform energy-
density distribution density distribution over the cross-section and the effective use made of the area
occupied by the inner structure. Since the occupied by the inner structure. Since the
breakdown voltage of a cable is directly related to the uniformity of energy-density distribution within the cable, the expectation is that the power-handling capacity of that of the corresponding ordinary coaxial cable.
A typical example where this factor, together with the lower attenuation behaviour, could be particularly important is in application to high-power u.h.f. aerial from a television transmitter to the point of radiation. Here the size and weight of the ransmitter equipment requires that it be ocated at ground level while the aerial has coverage required. The interconnecting cable has therefore to be both of considerable length and capable of handling high power.
Variou
Various structures have been considered over the development period for a practical
dipole-mode cable, and the one that now emerges as likely to be of particular success is shown in Fig. 6. This has 12 parallel wires spiralled around an inner polythene ube and supported centrally within a conwheel' type dielectric spacer. This cable can be expected to exhibit the required low-loss characteristics while remaining flexible enough for all normal purposes. Jointing the cable can be performed in a
number of ways, ranging from the simple echnique of soldering the individual wires together with small metal sleeves to the construction of a connector arrangement similar to that employed in conventional coaxial cables but with plug-in joints for
each of the inner wires. An alternative ointing technique has been used in which the separate wires are laid in metallized grooves cut longitudinally in a small length of dielectric tube.
In this new form of coaxial cable, previously applied to such a mode not mportant development is foreseen, offering much lower losses, coupled with and including the bottom end of the

Fig. 6. Dipole-mode cable.

Handbook of Fiber Optics, Edited by Helmut T. Wolf. 558 pp , hardback. Granada, $£ 25.00$. Ten authors from Germany, Japan and America,
collaborated to produce this book, which is on che use of optical fibres in communications:
he thit application for fibres conducting unmodulated
light are largely ignored except in the case light are lay
endoscopy.
The book is a concentration of a large body of
widely scattered information widely scattered information, and is thus a convenient survey of the subject, with a large
number of references. Each author undertakes feview of a particular facet of optical comm nications (the book was first published in 1979) and there are reviews of research activities in
Europe, the USA and Japan. The writing is at a Europe, the USA and Japan. The writing is at a
level which would be suitable for engineers and
scientists in scientists in other disciplines who need to use For the worker already involved, it is a useful
Fores and Aeference source and guide to further reading.
microwave band. The opportunities fo future application are considered to be
clearly distinguishable from optical-fibre clearly distin
competition.

Acknowledgements. The authors are in debted to Professors A. L. Cullen and E. A. Ash of University College, London, for the facilities made available in the pursuit
of this work. They also acknowledge with gratitude the most valuable collaboration provided by Cable \& Wireless Ltd., in seconding for a year one of us (S.G.C.) to work full-time in the University on the project.

References

Barlow, H. M. \& Nouri, M., 'New forms of
waveguide', Wireless World, February p.p. 38-40.' M., 'Multi-conductor coaxial cables
Barlow, H. M. Barlow, H. M., 'Multi-conductor coaxial cables
operated in the dipole--mode and their possible
applications' operated in the dipole-mode and their possible
applicitions', Jour. Phys. D: Appl. Phys., Vol.
12, 1979, p.p. 321 -333. editor, four chapters describe the components
of a system - waveguides, sources, detectors,
connectors and switches. These are followed by connectors and switches. These are followed by
sections on economics, applications in commusections on economics, applications in commu-
nication systems and a piece on medical endoscopes.
Ferromagnetic Core Design and Application Handbook, by M. F. D. DeMaw. 256 . $25 p$.,
hardback. Prentice-Hall International, 12.95 ., hardback. Prentice-Hall International, £12.95.,
The emphasis in the title of this book ought, The emphasis in the title of this book ought,
perhaps, to have been on the applications of cores rather than on oneir design, since the
majority of the text is devored to very practical majority of the text is devoted to very practical
information on the specification and use of ininformation on the specification and use of in-
ductors which employ iron or ferrite cores. Properties of materials and the physics of cores are covered in the first chapter, the suc-
ceeding three being concerned with the use of ceeding three being concerned with the use of
cores in the forms of rods and bars, toroids, beads, sleeves and pots. Chapter 5 deals with permanent magnetic materials. A good bibliog-
faphy, a list of references and a number of raphy, a list of references and a number of
appendices complete a most helpful book. The
circuit diagrams used throughou to circuit diagrams used throstughout the book to
illustrate the use of cores, and reference to comilustrate the use of cores, and reference to com-
mercial cores by type number are especially useful, thoush the references are to American
components.

6809 evaluation system for $£ 100$

Uprated Nanocomp and cassette interface
by R. Coates

The 6809 is a recent 8 -bit

microprocessor which uses a 16 -bit architecture to considerably improv the performance available from an 8 conventional 16-bit processors is accelerating, many designers think that the 6809 represents the practical limit for an 8-bit device.
Unfortunately, few potential users have been able to evaluate this processor because there is very little hardware available at present and information is still scarce. This design is based on the well-tried and tested Nanocomp (Jan. 81) and provides a the 6809.

The 6809 is the most recent addition to the M6800 family of microprocessors, and provides a much more advanced architecture than the 6802 . Internally the device is a 16 -bit processor, which can perform $16-$
bit operations, with several extra registers and other improvements. However, because the device retains an 8 -bit external data bus, the hardware is very similar to the 6802 and can therefore be used with a slightly modified Nanocomp. is attributable to several factors besides the potential of 16 -bit operations. An important advantage is the addition of extra and more powerful addressing modes which
enable the processor to recognize 1464 different variations of instructions and addressing modes from a basic instruction set of 59 . Despite this large number of instructions, the improved architecture makes the device easier to program. earlier Motorola microprocessors, the 6809 is compatible at source-code level with the 6800 so all but a few of the existing mnemonics are incluaded. Exceptions such as rigidly as possible the regularity of the architecture. Extra addressing modes have been provided for the existing instructions and new instructions, unique to the 6809 , have been added. Therefore, source programs written for the 6800 can be re-
assembled using the 6809 op-codes, (not all are the same as the 6800) and existing software can be transferred. All mnemonics excluded from the 6809 can be per formed by new instructions. Although it may seem pointless to transer existing allows users to upgrade their systems with

pia
4000 output/data direction register A 4001 output/data direction register B 4002 control register A
out having to re-learn completely
out having to re-learn completely.
Branch instructions have been improved by adding 16 -bit 2's complement offsets as well as 8 -bit. This permits a branch to be made from anywhere to anywhere in the writing of position independent programs much easier.
Circuit modifications
The block diagram of this design is iden tical to the original version except that th the 128 bytes at address 0000 to 007 F are not available. The circuit diagram in Fig 1 is almost identical to the original and apart from the obvious change of c.p.u. chip, the main difference is that the nal, is omitted. This i.c. is not required because there is no valid memory addres signal on the 6809, and invalid memor addresses are forced to FFFF. The E out put can be used directly in place of sion of an extra interrupt input, the fas interrupt request FIRQ. This input is no used in the present design, but is brough out to a pin for possible future use. Rese on the 6809 has a Schmitt-trigger input
which, with capacitor C_{9}, provides automatic power-on reset. Because the c.p.u on-chip r.a.m. is not available, the
memory map has been revised and is shown in Table 1. The monitor workspace is now positioned at the top of the 1 K
memory and therefore about 40 bytes are lost for user programs. All other aspects of the circuit and testing are as described fo the 6802 version

Operation

Operation is more or less the same as the 6802 version. As the monitor software list-
ing now includes cassette-tape handling routines, the full 1 K allocated to the monitor program, $7 \mathrm{C} 00-7 \mathrm{FFF}$, is now used These routines use the L and P keys and are described later. The main alteration to mand R which has been revised to take account of the increased number of c.p.u. registers. This command is automatically entered after a SWI, but may be re-entered with the R key. The condition-code regis-
ter contents are first displayed with the right-hand digit denoting the register being displayed as shown,
$\begin{aligned} &-= \text { condition-code register } \\ & \text { and }\end{aligned}$
$B=\operatorname{acc} A$
$=\operatorname{acc} B$

$\zeta=\mathrm{Y}$ register
$\mathrm{L}=$ user stack pointer
$=$ program counter
$P=$ program counter
The I key will increment through the various registers, and their contents will be shown on the left four digits. Afte displaying 5 , the unit automatically re turns to the monitor start. The two new
software interrupt instructions, SW12 and SW13, are not used by the monitor but with the hardware interrupts, the progran can jump to and continue from a specified address in certain memory location These are listed in Table 2 .
When an interrupt occurs, the continua tion address is fetched, which is usually the interrupt service routine, and proces-

Table 2. Interrupt jump locations

When an interrupt occurs, an address is fetched from the memory shown and
processing continues from that address.

WIRELESS WORLD JULY 1981 three or greater is given.
Programming tial. ters are given below.
sing continues from that point. The NM input, however, is used for the abort key when a reset occurs, but it may be mod ified for other purposes by a users ensure that the useful monitor subroutines, listed in Table 2 of the original article, function identically and have the same entry address points. The re-entry point to the monitor from a user program is 7 D 97
which also applies to the 6802 version The four original programs can be in cluded if a 2 or 4 K e.p.r.o.m. is used. The start address for hex-decimal/decimal-hex converter is 7800, duckshoot - 7940 branch calculator - 7A00 and mastermind
-7 A 80 . For duckshoot, the speed is set at location 1000 and 1 because there is no memory at 0000 in the 6809 version. Two's complement offsets used by the branch instructions of the 6802 are limited to 8 bits but the 6809 also uses 16 -bit offsets,
with the PC relative addressing mode, therefore the branch calculator program now caters for these. In addition to re questing the start and destination addresses, the program requests the the right-hand display, which must be entered. If an instruction has only two bytes, it must be an 8 -bit offset so an 8 -bit value is given or two dashes if it is out of range. An instruction which requires a 16 -bi
offset must be three bytes or more, so a 16 bit answer is displayed if a byte value of

Because programming information for the 6809 is not widely available yet, a brief description of the architecture is given together with the instruction set and pro gramming details. However, for serious
programming, Motorola's MC6809 Preliminary Programming Manual is essen-
A programming model of the 6809 is shown in Table 3, and details of the regis

The A and B registers are general purpose 8 -bit accumulators for arithmetic calcu lations and data manipulation. Some in structions link the registers to form a
single 16-bit accumulator (D) with A as the most significant byte.
Direct page register
The direct addressing mode in the 6800 used for accessing the bottom 256 bytes of memory. This facility has been enhanced in the 6809 so that the 8 -bit direct page register is used as the most significant byt direct mode to be used under program control at any place in memory. Index registers (X, Y)
These are the same as the single 6800 register. The 16 -bit address in the register takes part in the calculation of effective directly. The address can also be modified by an optional constant or register offset. The 8 -bit constant offsets are supplemented with 5 and 16 -bit offsets. All four pointer registers ($\mathrm{X}, \mathrm{Y}, \mathrm{U}, \mathrm{S}$) can be used Stack pointers (U, S)
Stack pointers (U, S)
The hardware stack pointer, S, is used the processor'during subroutine calls and interrupts, and points to the top of the stack instead of the next free location as is the 6800 .
The user stack pointer. U, allows argutines. Both stack pointers can also be used as index registers, and have additional Push and Pull instructions which can operate on any or all of the registers (ex
oram count
Program counter
Used by the processor to point to the address of the next instruction to be executed.
Condition code register
This register, also known as the flag regis time. The register comprises
C (bit 0) CARRY. Indicates that a car occurred on the last ALU operation, or borrow from subtraction instructions. V (bit 1) OVERFLOW. Set by an operation which causes
arithmetic overflow. Z (bit 2) ZERO. Set if the previous operation was zero.
(bit 3) NEGATIVE. Contains the
m.s.b. from the result of the preceeding

Table 3. Programming model of the 6809

operation. Therefore, a negative two' complement will leave N set.
I (bit 4) IRQ mask bit. Interrupts on this line will not be recognised if Iis set. NMI, bit, but SW12 and SW13 do not affect it. H (bit 5) HALF CARRY. Indicates a carry from bit 3 in the ALU after an 8 -bit addition. Used by the decimal adjust instrucadjust operation . F (bit 6) FIRQ mask bit. Interrupts on this line will not be recognised if I bit is set NMI, FIRQ, SWI and RESET set the F bit. IRQ, SWI and SW13 do not affect it.
E (bit 7) ENTIRE FLAG. Used to indicate whether all the registers were stacked or a subset (PC and CC) performed by a FIRQ. The E bit of the stacked condition code register is used on return from in terrupt (RTI)
The main improvement offered by the 6809 is the proliferation of addressing modes which are summerised below. INHERENT. In this mode the opcode contains all necessary addes informatio (single byte instruction)
IMMEDIATE: The data to be used by the instruction immediately follows the op value depending on the instruction.
EXTENDED. The contents of the two bytes following the opcode specify the 16 bit effective address used by the instruc tion. of indexed addressing where one level of indirection is added to extended addressing, ie, the two bytes following the
postbyte of an indexed instruction contain postbyte of an indexed instruction cont he address of the address of the data
DIRECT. Similar to extended but only the specified in the byte following the opcode. The upper 8 bits of the effective addres are supplied by the direct page register Therefore, programs using this mod rather than extended INDEXED. The most complex addressing, one of the pointer registers (X , $\mathrm{Y}, \mathrm{U}, \mathrm{S}$ and sometimes PC) is used in a calculation of the instruction. The postbyte of an indexed instruction specifies the basic type and variation addressing mode, and the pointer register
to be used. Table 4 gives the details necesary for calculating the postbyte opcode fo all forms of indexed addressing. The five basic types of indexing are
Zero Offset. The selected pointer register ontains the effective address of the data Constant Offset. A two's complement off set and the contents of one of the pointer registers are added to produce the effective address of the operand. The pointer register's initia
Three sizes of offset are available, \pm bit (-16 to +15), ± 7-bit $(-128$ to +127$)$ and ± 15-bit (-32768 to +32767). The 5 whereas 8 -bit and 16 -bit offsets require

36 W WRELESS WORLD JULY 1981									
Table 4. Indexed addressing modes									
		Non indirect				Indirect			
Type	Forms	Assembler form	Postbyte op-code	+	$+$	Assembler form	Postbyte op-code	+	+
Constant offset from R (signed offsets)	no offset 5 -bit offset 8-bit offset 16-bit offse	$\begin{gathered} R \\ n, R \\ n, R \\ n, R \\ n, R \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { 1RRO00100 } \\ & \text { ORRnnnnn } \\ & \text { 1RRO1000 } \\ & \text { 1RR01001 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 1 \\ & 4 \\ & \hline \end{aligned}$	$\begin{array}{r} 1 \\ 2 \\ \hline \end{array}$	$[\mathrm{R}]$ 1 RR 10100 defaults to 8 -bit $[\mathrm{n}, \mathrm{R}]$ 1 RR 1000 $[\mathrm{n}, \mathrm{R}]$ 1 RR 11001		4 7	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$
Accumulator offset from R (signed offsets)	$\begin{aligned} & \text { A - register } \\ & \text { offset } \\ & \text { B - register } \\ & \text { offset } \\ & \text { D - register } \\ & \text { offset } \end{aligned}$	$\begin{aligned} & A, R \\ & B, R \\ & D, R \end{aligned}$	1RR00110 1RR00101 1RR01011	1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	[A, R] [$B, R]$ [D, R]	1RR10110 1RR10101 1RR11011	4 4 7	0 0 0
Auto increment decrement R	increment by 1 increment by 2 decrement by 1 decrement by 2	$\begin{gathered} , R+ \\ , R++ \\ ,-R \\ ,--R \\ \hline \end{gathered}$	1RR00000 1RR00001 1RR00010 1RR00011	$\begin{aligned} & 2 \\ & 3 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		wed 1RR10001 wed 1RR10011	6	0
Constant offfset from PC	8 -bit offset 16-bit offset	$\begin{aligned} & \hline \text { n, PCR } \\ & \text { n, PCR } \end{aligned}$	$\begin{aligned} & \hline 1 \times \times 01100 \\ & 1 \times \times 01101 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 5 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { [n, PCR] } \\ & \text { [n, PCR] } \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \times \times 11100 \\ & 1 \mathrm{XX} 11101 \end{aligned}$	4 8 8	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
Extended indirect	16-bit address	-	-	-	-	[n]	10011111	5	2
$\mathrm{R}=\mathrm{X}, \mathrm{Y}, \mathrm{U} \text { or } \mathrm{S} \quad \mathrm{X}=00 \quad \mathrm{Y}=01 \quad \mathrm{X}=\text { don't care } \quad \mathrm{U}=10 \quad \mathrm{~S}=11$ + and $+\#$ indicate the number of additional cycles and bytes fot the particular variation									

or 2 bytes respectively after the postbyte
for the offset for the offset. offset indexed except that the two's complement value in one of the accumulators (A, B or D) is used as the offset, the postbyte specifies which. Neither register
is altered by the operation. Auto Increment/Decrement. zero offset, but with auto increment. Afte the pointer register is used it is incremented by 1 or 2 and then used. Indexed Indirect. All indexing modes, ex
cept auto increment/decrement-by-one cept auto increment/decrement-by-one
and 5 -bit offset, can have an additional level of indirection. This means that the effective address is contained at the location specified by the content of the inde register plus any offset.
relative addressing mode, i.e. the byte(s) following the branch opcode is a signed offset which is added to the program coun ter. If the branch condition is true, the calculated address (PC + signed offset) is
loaded into the program counter. Execution then continues from the new address. Short branches require a 1 -byte offset and long branches require 2 bytes.
PROGRAM COUNTER RELATIVE Another type of indexed addressing wher with an 8 or 16 -bit offset. This is very useful for pointing to blocks of data in a program which must be relocatable, i.e. runs anywhere in memory. The Load
Effective Address instruction makes use of this mode. For example, to point the X register to a block of data by specifying an offset, relative to the current PC position,
where the data block resides. This ofsset
will remain constant wherever the program is run, whereas with a LDX instruction
the absolute address must be specified. additional level of indirection is available with this mode.

New instructions

PSH/PUL. These instructions allow any combination of registers to be pushed ont or pulled off the hardware (S) or user (U)
stack. Which registers are pushed o pulled is defined by an immediate byte

> Fig.2. Cassette interface. This circuit is powered from the Nanocomp via the p.i.a. connector.

$$
\begin{aligned}
& \text { after the opcode. Each bit in the byte } \\
& \text { specifies a register. } \\
& \text { C C }=\text { bit } 0 \\
& \text { A,D }=\text { bit } 1 \\
& B, D=\text { bit } 2 \\
& D P=\text { bit } 3 \\
& X=\text { bit } 4 \\
& Y=\text { bit } 5 \\
& U, S=\text { bit } 6 \\
& P C=\text { bit } 7
\end{aligned}
$$

TFR/EXG. Any register may be trans ferred or exchanged with any other register of the same size, i.e. 8 -bit to 8 -bit or 16 -bi to 16 -bit. Also, a 16 -bit register can b

Fig.3. Layout and compónent placement
transferred are specified in an immediate byte. A code contained in the most signifi-
cant four bits specifies the first register and the least significant four bits specify the second.
The register codes are

$$
\begin{aligned}
& 0000=\mathrm{D} \\
& 0001=\mathrm{X} \\
& 0001=\mathrm{Y} \\
& 0011=\mathrm{U} \\
& 0100=\mathrm{S} \\
& 0101=\mathrm{PC} \\
& 1000=\mathrm{A} \\
& 1001=\mathrm{B} \\
& 1010=\mathrm{CC} \\
& 1011=\mathrm{DP}
\end{aligned}
$$

MUL. Multiplies the unsigned binary numbers in the A and B accumulators and places the uns
accumulator.
Although. 680 is by no means complete, it should enable the constructor to start programming this very powerful processor.
Cassette tape interface One facility which is more or less essential with any computer system is a means of storing programs. The cheapest conve-
nient method of storage is a cassette tape and, as most users will have access to a cassette recorder, all that is required is the appropriate interface and software. This simple interface can be used with either 1 K memory in about 15 s . An important part of the tape storage system is a set of routines, so readers using the original monitor will need to reprogram thei e.p.r.o.m.
Data to
recorder from a p.i.a. output line in the usual asynchronous serial format of a start

bit, eight data bits and two stop bits for each data byte. Data bytes are transmitted in blocks of up to 16 bytes and each block
starts with a 2 -byte code, which identifies starts with a 2-byte code, which identifies
the start of a block on playback, followed by 2 bytes which give the start address of the block. The data bytes are then sent, followed by a checksum byte which is calculated by adding all the bytes in the block. The end of a recording is isenuified onto the tape as one cycle of a square wave, and the period of $500 \mu \mathrm{us}$ or 2 ms determines whether it is a 1 or 0 respectively. When loading a program, the period of each cycle greater or less than the average period which makes the system reasonably tolerant of tape speed changes between different machines
The interface plugs into the p.i.a comp. Spare lines PB6 and PB7 are used for data transmission and reception so the interface can be permanently connected The data to be recorded is transmitted potential divider R_{1}, R_{2} in Fig. 2. On playback, the output from the recorder is limited and squared for driving the logic input of the p.i.a. A CA3140 is used for IC_{1} because it operates satisfactorily from a single 5 V supply
on a small p.c.b. as shown in Fig. 3. Only four connections are required to the Nano comp and the connector numbers are
$\begin{array}{cc}+5 \mathrm{~V} & 7 \mathrm{a} \\ 0 \mathrm{~V} & 2 \mathrm{a} \\ \text { PB6 } & 12 \\ \text { PB7 } & 12\end{array}$
If a ribbon cable is not available, ordinary
stranded wire can be used and soldered onto the connector.
Operation
The L and P keys are used to load and dump data respectively. To save a
program, key P and the display will re program, key P and the display will request the start address of the memors address F. Transmission will start immediately the last key is released, so th recorder should be started before this. When the recording is finished, F will appear in the left of the display which indicates that the recorder can be stopped. Abort or R
To load a program, key L and start the recorder just before the beginning of the program. To provide a form of feedback, the top and bottom segments of the
lefthand display are turned on as data is lefthand display are turned on as data is
received. When a 1 is received, the top segment is on and when a 0 is received, the bottom segment is on. If the program is loaded correctly, when the end-of-file cod is received F is displayed. Abort or Reset
returns the prompt. If a checksum error is encountered in one of the data blocks, a :is displayed and loading is stopped. If this occurs the tape must be rewound and res tarted.
With some experimentation the record and playback levels can be optimised although, with a reasonable recorder, they
are not critical. It should be noted that the requirements for recording data on a cas
sette tape are high so sette tape are high so only high quality audio cassettes or, preferably, certified
data quality should be used. Also, a worn recorder which does not give an acceptabl performance with speech or music is un likely to produce reliable data recordings Auto record-level machines may also caus problems because their circuits are not
designed to be used with a low mean-topeak ratio square wave.
Although the Nanocomp was originally intended as a microprocessor trainer many constructors may want to uprate the other systems. We intend to support this design with a further article describin extra peripheral devices such as a-to-d and d-to-a converters and a simple e.p.r.o.m programmer.
The origin
The original monitor/utility progran in the master mind program, and to im prove the performance if poor quality key are used. A hex list of the new monitor,
which also contains the cassette interface which also contains the cassette interface
software, can be obtained from the editorial office by sending a large s.a.e. clearly marked 6802 or 6809 .
A set of p.c.b.s for the 6809 Nanocomp (power supply and logic board) will be board for $£ 1.50$ inclusive of v at and UK boastage, from M. R. Sagin, 23 Keyes Road postage, from
London N.W.2.
Technomatic Ltd, 17 Burnley Road, London N.W. 10, 01-452 1500, and Magent Electronics Ltd, 135 Hunter Street, Burton
on-Trent Staffs, 0283 -65435, will b offering a kit of components. Both com offering a kit of components. Both com-
panies will also reprogram e.p.r.o.m.s fo path versions of the Nanocomp.

WORLD DFRAM ATECURRADTO

CB - so close to 28 MHz One factor arising from the Home Office's draft 'performance specification' for 27 MHz f.m. equipment, for what is now Service", will be viewed with some dismay by many radio amateurs: the minimal frequency gap between "Channel 40 " (27.99125 MHz nominal carrier frequency) and the 28.000 MHz low-frequency end of an unexpectedly savage turn-down of the RSGB request that any such service should not be located close to an amateur band. It can be argued of course that if c.b.ers stick to the proposed conditions - for
example that all equipment must be covered by a licence of which it will be a condition that "the apparatus fulfils, and is maintained to, certain minimum technical standards" - then there may be few problems. But there seem certain to be "social almost certainly they will, that their lowpower, low-cost rigs cannot be expected to unction satisfactorily when one of their neighbours is legally running a 28 MHz or 400 watts p.e p . output only a few kHz way from the c.b. channel!
Although the latest Home Office plans have received a good deal of criticism one cannot help feeling that if the same propowould have been warmly welcomed by most all those interested in the deelopment of c.b. What remains to be seen s whether the proposed regulations will be eyed or enforced
For example, it is difficult to imagine operator actually taking care to insert a 0 dB attenuator when using a high aeria!!

Amateur television

The latest issue of CQ-TV, journal of the British Amateur Television Club, reports with Continental amateurs. Andrew Emmerson, G8PTH, of Canterbury mentions his successful reception of lockable SECAM colour transmissions from FIEDM at Le Havre. Several British amateurs are experimenting with video transmissions on Australia a television repeater accepts signals on 440 MHz and retransmits them on 579 MHz and can thus be received on un-
modified domestic television receivers. In he USA the FCC is continuing to permit handful of amateurs to experiment with "medium scan television" on 29.150 MHz with a maximum bandwidth of 36 kHz . This concession is resulting in the exploita-
tion of a number of novel techniques, intion of a number of novel techniques, including frame grabbing at an eighth of the
60 fields per second of standard American television. It has been found that at least
7.5 fields per second are needed to give a reasonable illusion of movement. One of the amateurs concerned in this work
(W3EFG) was the originator, several years ago, of the General Electric (USA) "'Sampledot" narrow-band system and plans are now being made to use some of the original Sampledot equipment in conjunction with digital scan converter and frame grabfield rate
Slow-scan land and sea image data with a format of 256 by 256 pixels and 16 grey levels with digital transmission on the beacon signal at 145.825 MHz are among the
facilities that will be provided by the facilities that will be provided by the
British amateur satellite UOSAT (University of Surrey) due to be launched in a few months time. UOSAT will carry an earthpointing c.c.d. two-dimensional imaging array.
Amat
Amateurs at British Telecom's research centre at Martlesham are planning tv
transmissions both for transmissions both for local "news" and
for regular contacts with Holland. BATC deserves congratulations on the new "Amateur-Television Handbook" edited by John Wood, G3YQC and Trevor
Brown, G8CJS. This excellent 96 -page booklet is packed with eminently practical information and designs provided by some 20 amateurs and covering principles,
aerials, receivers, transmission, vision erials, receivers, transmission, vision
ources, video processing and colour elevision (non-members $£ 2$ plus 35p postage from I. Pawson, 14 Lilac Avenue,

eicester LE5 (FN).

ARU Region

Conference

The many sessions of the IARU Region 1 Conference at Brighton, at which the national amateur radio societies of some 36
countries were represented among the 150 or so delegates, resulted in many recommendations that in the coming years should help to make as effective as possible both operating and technical investiga-
tions. But less happily this conference will lso be remembered for the deaths of two of the delegates: Peter Balestrini, G3BPT and the Dutch amateur PAoOK. Peter Balestrini was the. 1980 President of the RSGB and was attending the conference in nications Manager. Professionally engaged with Port of London Authority telecommunications, he was for many years one of the leading enthusiasts who built up the Raynet" emergency system
Although there can be few amateurs
who did not wish the Conference well, some criticism has been expressed of the Home Office decision to permit the use of a special callsign, GB1IARU, since the use of "four-letter" callsigns is not specified in the international Radio Regulations.
However the Home Office clearly regarded
this as a very special "special event" and even gave blanket permission for the station to be operated by foreign delegates not
April solar storm
Highly disturbed h.f. propagation conditions were experienced during April, particularly during the periods April 7 to 13 flares. On some days F2 critical frequen flares. On some days F2 critical frequen-
cies remained abnormally low and on April 13 between 0600 and 1700 hours the F2 layer was not detectable at The Appleton Laboratory, and the amateur h.f. bands remained virtually unusable during much
of the day. A considerable number of severe th.f. blackouts and auroral conditions were experienced during the month. Such ionospheric disturbances tend to take place most frequently during the early decreasing phase of a sunspot cycle, but the standard. 3.5 MHz by Observations made on 3.5 MHz by
G3XRI and VK7AE in Tasmania, AustraG3XRJ and VK7AE in Tasmania, Austra-
lia during an eclipse of the sun on Feblia during an eclipse of the sun on February 4 around 2030 hours showed a very
marked enhancement of this low h.f. path between England and Australia during the total eclipse period. The effect, during the Australian "dawn", was to keep the path open almost an hour longer than normal, signals after the sun re-emerged.

In brief

A weekend 'Hamfest' from Friday to Sunday, $26-28$ June, is being organized by the
Leeds \& District Amateur Radio Society, Leeds \& District Amateur Radio Society, arrangements for overnight camping and caravan facilities. A demonstration station, GB2WYR, will operate . . . The RSGB's v.h.f. national field day, probably now the
biggest UK contest event of the year, is on July 4 to $5 \ldots$ Mobile rallies include three on June 28: Longleat Park, Warminster, Wilts; Rolls Royce Sports and Social Club, Barnoldswick; and Crawfordsburn Scout
Camp, Crawfordsburn County Park, near Bangor, Co. Down; July 12 Droitwich High School, Droitwich; July 19 Brighton Raceground, Brighton and Cornwall Technical College, Pool, Camborne. . . . Abuse
of the South Londo 144 MHz of the South London 144 MHz repeater
continues, including the weekend of the continues, including the weekend of the
Brixton disturbances. . J.T. Dolan of Seattle, USA, was fined $\$ 750$ for operating the pirate broadcast station "RX4M Voice of Clipperton" after FCC engineers traced him using sophisticated mobile direction
finders. In California, David Lee Grimm inders. In California, David Lee Grimm
was fined $\$ 1500$ for illegal c.b. operation after repeated warnings and equipment valued at about $\$ 8000$ seized, including
four linear amplifiers, two amateur radio four linear amplifiers, two amateur radio transceivers and one c.b. radio transceiver.
PAT HAWKER, G3VA

Leap seconds

Story of the transfer from astronomical to atomic time

Most people now know that all tim measurements and time signals throughout the world are based on atomic clocks but the need to adjust them by one second at the end of the year is not well understood. It follows from the fact that the signals mus not only give precise uniform
intervals of time but must also the time of day which is determined by the non-uniform rotation of the earth. The transfer from astronomical to atomic time and the co-ordination step in the advance of science and it is surprising that the full story has never been told. The requirements of radio engineers were always prominent in the discussions.

The time of day is not required very accu rately for civil purposes - it is changed by an hour, twice a year - but for navigation scale based on the position of the stars, known as UT1. Time intervals, on the other hand, are required to be as precise and uniform as possible, particularly fo air navigation and the control of the frequencies of radio cransmitters. For thes signals is irrelevent.
These two requirements are so different that it might be asked why two separate sets of signals are not used, giving astro-
nomical time for sea navigation and civil purposes and atomic time for everything else. This was indeed suggested by D G.M.Clemence of the US Naval Observatory who proposed that two units of tim should be defined, adding, probably no very seriously, that the atomic unit should
be called the Essen. The fundamental objection to this is that it would constitute a duplication of one of the basic units of measurement; and a practical objection is that the use of two time scales would un ience with standard frequency transmis sions had shown. It was therefore worth while to make an effort to construct a single time scale, wrich would give the ful accuracy of the atomic clock and the time
of day as accurately as needed. This principle was accepted but it took 16 years to get international agreement on the details. The first caesium atomic clock was pu into operation at the National Physica and it was immediately obvious to us that

The original caesium resonator, designed at the NPL by the auhor and J. V. L. Parry,
which led to the development of the atomic standard of time.
the necessary checks on its performance under different conditions could not be made in terms of astronomical time. A provisional atomic unit was defined and an atomic scale maintained by quartz clocks
checked by the atomic clock, under stanchecked by the atomic clock, under standard conditions, as often as necessary: tronomical Union was meeting in Dublin that summer and through the courtesy of the Astronomer Royal, Sir H. Spence Jones, I was able to attend this meeting to
describe the clock and the initial results. One of the main topics of discussion at the meeting was a proposal to redefine the unit of time, making it in effect a fraction of the time of revolution of the earth round the sun instead of a fraction of the time of
rotation on its axis. It was believed that this unit, the second of ephemeris time (ET) would be more constant than the second of universal time (UT1). It is diffi

The next leap second will be The next leap second will be
on 30th June 1981 in the last minute of the day. The minute before midnight will contain 61 second
seconds.
recommended was in effect the averag value of the second of UT1 over a period of
200 years. Such a unit might be useful fo astronomical work but it is not of the sligh est use to the physicist and radio engineer I suggested that it might be wise to delay decision until agreement was obtained on
the definition of an atomic unit which would certainly be required in the future. However, the proposal to change to ET
was adopted and was confirmed at was adopted and was confirmed at th General Conference of Weights and Mea it meant that from 1956 until 1967, when an atomic unit was defined, the definitive unit of time existed only on paper. The unit used in practice was the second of
UT1; and at the NPL this was defined in UT1; and at the NPL this was defined in
terms of the provisional atomic unit, which terms of the provisional atomic unit, which
was made available throughout the world by our standard frequency transmissions and their 1s timing pulses derived from th standard. These were used at the Interna tional Bureau de 'Heure to smooth out the
irregularities of the astronomical signals. irregularities of the astronomical signals.
Although the atomic clock had a luk warm reception at the Dublin meeting an important resolution was passed with th advocacy of Dr W . Markowitz. It wa agreed that when the relationship between
the atomic frequency and the second of ET had been established the atomic clock
${ }^{40}$ would
would be used to make ET available. We planned together a programme of mea-
surements to obtain this relationship: the time interval between certain agreed signals about a month apart was to be measured at the NPL in terms of the atomic: clock and at the USNO in terms of ET. Markowitz had developed a method of obobservations of the sun; but even so the measurements were continued for three years before it was decided that further averaging was not likely to improve the accuracy of the result which was therefore
announced. The result expressed as the frequency of the caesium atomic transition in terms of the second of ET was
9192631770 ± 20 cycles
The second of atomic time was therefore the time occupied by 9192631770 cycles of omitted since they were due almost entirely to the astronomical measurements. This value was used at the NPL in place of the provisional value, from 1958, in
accordance with the Dublin resolution. accordance with the Dublin resolution. astronomers to the formal adoption of the atomic unit. They regarded the atomic clock as a kind of superior quartz clock which could be used to smooth astronomi-
cal time, and ignored the fundamental difference between them. The quartz clock is simply a stable oscillator which can be adjusted to have any frequency by altering its dimensions, whereas the atomic clock has a frequency determined with great ducible anywhere in the world and provides a unit of time which is immediately and readily available. It is ideally suited to
be a definitive standard of measurement. It be a definitive standard of measurement. It must be admitted, as was often pointed
out, that unlike the earth, it does sometimes stop, but this is an academic point of no practical significance. When one clock stops it can be reset by reference oo one that has not, with a precision enormously greater than any astronomical mea-

Louis Essen was born in 1908 and
educated at High Pavement School in educated at High Pavement School in
Nottingham and Nottingham University College, gaining a London external degree. Joining the NPL in 1929,
he worked with D. W. Dye on tuninghe worked with D. W. Dye on tuning-
fork and quartz oscillators and has fork and quartz oscillators and has
continued to investigate frequency standards throughout his career. Working with A. C. Gordon-Smith
from 1946 to 1950 , he was able to from 1946 to 1950 , he was able to
establish, using a cavity resonator, a new value for the velocity of light,
which is still which is still accepted.
Taking uo a proposa Taking up a proposal by I. I. Rabi in
the United States, Dr Essen collabo-
rated with rated with J. V. L. Parry at the NPL to produce, in 1955, the first atomic cae-
sium frequency standard: a later design now serves as the British national standard. Work in this field brought an
involvement with relativity, which led involvement with relativity, which led
to a belief that Einstein was wrong in one important respect and to a dif-
ferent interpretation of the Michelsonferent interpretation of the Michelson-
Morley experiment. Morley experiment.
Dr Essen gained a Ph.D in 1941, a
surement. And even if they all stop they can be reset by reference
that one is no worse off.
It must be remembered too that the major observatories, including the Royal Greenwich Observatory, were founded with the specific object of providing the
navy and merchant ships with time. Their navy and merchant ships with time. Their
responsibility was later extended to providing a uniform time scale for scientific purposes. The determination of astronomical time became a complex operation, the measurement made at many observatories being correlated at the Bureau de
l'Heure which published the definitive l'Heure which published the definitive
corrections to time signals about 12 months in arrears. There was a considerable vested interest in retaining astronomical time as the definitive system. As several of those concerned jokingly said, there was
no doubt that we must change to atomic no doubt that we must change to ato
time, but not before we retire, please.
Another question to be settled was the
type of atomic clock to choose. In spite of he known performance of the caesium standard at the NPL and then at laborato-
ries in Canada, the USA, and Switzerland, ries in Canada, the USA, and Switzerland,
clocks based on the same spectral line of hydrogen and thallium were possible contenders. A lot of attention was also devoted to the study of a spectral line of
ammonia; and although this was never a ammonia; and although this was never a
serious contender as a time standard it led to the development of the maser and the laser. The advantages of the caesium clock prevailed and in 1967 it was accepted for defining the unit of time, with the value given above.
ied on standard for the is pulses with astronomical time signals presented some awkward problems. The first step was taken when they were made to
coincide on lst January 1958. It was coincied on the January 1958. It was
realised that they would diverge because of the variations in the rate of rotation of the earth, and the question to be resolved was the amount of divergence that could be tolerated. The first figure suggested was

D.SC. in 1948 and was elected FRS in Medal of the USSR Academy of
Scien of Sciences in
year, the $O B E$.

WIRELESS WORLD JULY 1981 0.1 s and to keep within this tolerance the actual frequency of the transmissions was offset from its nominal value by a stated
amount each year, amount each year, and in addition oc-
casional step adjustments of 0.1 s had to be made to the timing pulses. A further move towards co-ordination was made in 1960 when it was agreed with the RGO that all
time signals transmitted from the time signals transmitted from the UK
would have the same epoch. would have the same epoch.
It was of course rather ill
the constant unit in order to accommodate the variations of the astronomical unit and strong efforts were made to end this situation particularly through the International
Scientific Radio Union. A satisfactory soScientific Radio Union. A satisfactory so-
lution became possible when astronomers agreed that the signals could diverge by as much as 0.7 s from astronomical time UT1. The frequency offset was eliminated, standard frequency transmissions operated on
their true nominal values and the timing pulses on them gave true atomic time intervals. The divergence of the pulses from UT1 was compensated by a step adjustment of precisely 1 s , when necessary on
30 th June or 31st December. This enabled 30th June or 31st December. This enabled
the pulses to continue undisturbed but the the pulses to continue undisturbed but the
marker distinguishing the 1 minute pulse was moved along by 1 s . The use of these leap seconds enables the time signals to be maintained within 0.7 s of UT1, and for those who need it, the difference from
UT1 is given more accurately by a code or Morse announcement. The only inconvenience caused to those measuring time interval is the need to check whether there have been any leap seconds if the interval
extends through June or December. The extends through June or December. The derive a uniform time scale from the complex and non-uniform periodicities of the solar system, but could measure these periodicities in terms of the atomic clock.
If I may finish on a personal note, If I may finish on a personal note, I
often think how lucky I was to work in a branch of science which was advancing rapidly, which exploited many different techniques and in which there was full international co-operation. The problem
being tackled at the NPL when I joined in 1929 was the measurement of radio frequencies. The first solution was to measure them in terms of a tuning fork maintained in continuous oscillation. The accuracy achieved was 1 part in 10^{7} which
was considered by the Radio Research was considered by the Radio Research
Board to be adequate for the foreseable future, making further financial support unnecessary. The next advance was the quartz clock, which proved to be much more stable than the observatory penduThey revealed an annual periodic change of 1 part in 10^{8} in the rate of rotation of the earth. It was clear that any further improvement was prevented by the uncer-
tainty in the value of the astronomical tainty in the value of the astronomical
second. In 1945 I.I.Rabi, at Columbia University, suggested that the atomic beam magnetic technique might be adapted to form the basis of an atomic unit of time. The atomic clock has not only
made the measurement of time and frequency far easier but has increased its accuracy by about one million times.

Parallel-tracking pickup arm modifications and improvements

Construction is not as difficult as you might think: "precision assembly is simply not required'
working model of the paralle tracking pick-up arm, first described in the December 1979 and January 1980 issues, drew widespread interest at a recent exhibition as well as everal constructive proposals detailed in this article.

Two curious facts emerged from a showing of the parallel-tracking arm at the last Breadboard exhibition. Firstly, many people expressed doubts about their ability construct an arm with sufficient accuracy, even when building from a kit of parts. This problem seems to have magni-
fied out of all proportion. The parallelfied out of all proportion. The parallel-
tracking arm is far more tolerant of mechanical shortcomings in construction because of the "cleaning-up" effect of the servo system, and because of this particular design of gimbals, the inherent advantages of which
original article.
In addition, as the basic accuracy of the servo system is ± 0.2 degrees which represents about 1 lmm at the stylus, precision human eye is very good at detecting human eye is very good at detecting
parallelism and it is therefore not at all difficult to set up the reference arm and parallel track to well within this limit using an ordinary set-square and a straight rule. Moreover, the parts have specifically
been designed to be adjusted - they are
not pre-set - and so any error in assembly can be adjusted out. The wear points such as bearings and pivots have been given particular attention in design so that any
slack introduced by wear can also be adjusted out. It is salutary to compare this to the lack of serviceability and the built-in obsolescence of much of the equipment on the market today.
The second emergent fact was that the
principle of parallel tracking had been principle of parallel tracking had been
dismissed out-of-hand, even by those who had read the original article and the analysis by Randhawa on the grounds that "it only saves 0.7% distortion, which isn't audible anyway". Nothing could be
further from the truth! There is in fact not one isolated advantage to this technique but a package of benefits as listed below. OReduction of tracking distortion, as already mentioned.
Reduction of stereo delay-distortion with -Capability
records. This deserventering eccentric the design is the only some comment as which permits rapid one, as far as I know, tion of eccentricity. There are two important effects of eccentricity. On some types of music, the "wow". introduced by this defect is audible. That re-centering makes an audible difference I know to be true,
from results obtained from my record colfrom results obtained from my record col-
lection. Also, the eccentric record is conlection. Also, the eccentric record lis con-
stantly levering the arm to the lett and
right every revolution, working against the
inertia of the arm and the friction of the pivots. Unfortunately the audible effect of tified, but the loading on the record surface can be calculated in a similar manner to that given later in this article for record warp, and is not negligible.
OLow inertia of the arm means that seriously warped records, eg 6 mm warp, can be tracked. The beneits gained by low
inertia are similar to those achieved from re-centering the record -reduced wow and record wear. Again, the audible effects of wear are not quantifiable, but an given at the end of this article. given at the end of this article.
While the reduction in tracking distortion is probably not audible on its own to most people, when it is added to the audible effects of the other three points, the
result is noticeable. Add to this the inresult is noticeable. Add to this the increased trackability and reduction technique can be justified on all grounds except that of cost. And the cost factor can be reduced to a minimum by building your own!

mprovements

Pivot system. On the original design, the cup-type horizontal pivot tended to be a natural collector of dust. By inverting the cup and placing the pivot pin underneath,
this problem can be avoided. However it is then no longer possible to use the pivor height adjustment to help correct for neu-
rral equilibrium as suggested in the January 1980 article because the effective
height of the tracking arm above the horizontal pivot cannot now be altered. This is not so important as it might seem because he majority of modern cartridges can be set up for neutral equilibrium without having to resort to adjusting the horizontal which cannot be set up by adjusting the vertical pivot, filing away some metal from the underside of the counterweight will help.

Light slit. The light slit is also the cue rest, ut it can also be adapted to perform a third function as dust bug. It is in the perfect position to do this as a brush atust in advance of the stylus. It can be raised for cleaning simply by cue-ing the arm, and as it is earthed can be used to remove static by incorporating carbon fibres in the brush.

Lead-out wiring. Litz wire can be used to greater effect than first realised. Because individual strands of litz wire are insulated it is possible to conduct most of the signals in just a couple of wires. The soldering technique for such fine wire is more de-
'manding, but the unwanted forces introduced by the lead-out wires at the point where they exit from the tracking arm are reduced, considerably. Tracking arm. The diameter of the dura-
lumin tube used for the tracking arm has been increased to 9.5 mm . The original smaller-diameter tubing performed well with most types of cartridge, but with the increased use of moving-coil cartridges I
felt that a much stiffer tube was needed. A comparison of the new arm with a conventional arm is given at the end of this article.
Slider (part 19). The material now recommended for this part is Nylon 66 , which is superior low-friction and low-wear properties compared with the original brass/steel
rangenent. It is also very easy to cut to

Drive cords. A superior material has been found in the form of round-section panded neoprene cord. This is a soft, resilient cord which has excellent vibration signed to be ioined with cyanoacrylate "super-glue" to form a fitted drive band.
coustic isolation of the servo motor and earbox was neatly solved by the introduc visco-elastic compound (modestly cribed by the manufacturer as "a signifi cant advance in polymer technology") which can recover from deformations of ore than 500% and which is very lossy to any mechanical excitation, typically 90% ween that of plasticene and soft rubber Used as mounting pads for the servo assembly in place of the rubber grommets irst specified, it gives superior results. I erial for decouplin

Gimbals. On the original model, if the horizontal pivot of the gimbals was knocked off the support pillars, there wa nothing to stop them from going compillars has therefore been modified to corporate the pivot pins in a U-shaped recess so that this cannot happen. The improved design is shown on page 43.
Fast traverse. The criticism most often voiced concerned the two-minute retur time, which was found by many to be inconveniently long, even for transcription purposes. This simple modification has been developed for a traverse time of just ing machines.
The modification consists of a second motor which drives the lead screw at speed without the assistance of the servo motor this method already by driving the tead
 arm, and fast traverse action and slipping clutch, as well as a suggested alternative parallel track (bottom). instead of a long slot in a strip of aluminium alloy, is easier to make if 'you have a drilling stand for an electric drill. Accuracy of the assembled track
depends on the straightness of the steel rods and not so much on the accuracy of drilling (drill both plates
together): this simplifies the tlask of producing a well-trued track. Precision-ground steel rod of $1 /$ in diameter is readily available from
angineers merchants and is not expensive. The rods are fixed into the end plates with Loctite, which is
allowed to set with the assembly llowed to set with the assembly resting on a alat surface such as a
piece of plate glass.
screw direct and simply slipping the drive band from the servo motor -not good practice because of the stretching and gen rally increased wear of the drive band. also puts an unfair strain on the miniature
gears in the worm gear transmission. A much more acceptable method is to drive the lead screw indirectly as on page 43 . By using a double-groove pulley whee with a slipping clutch on the output shaf operated within their limits, and the slip ping clutch relieves the gear wheels inside the gearbox of excessive strain. Such a slipping clutch is easy to construct from a cuple of wavy-type spring or

The servo motor now has to overcome the magnetic drag of the second moto during normal operation, if this second motor is a permanent-magnet type. This is
avoided by applying a small bias curren to the second motor of a value that will overcome the drag but not make the motor revolve. This can be done by a suitable resistor via the switching network. Alter used, avoiding this requirement alto gether. But whichever type of motor is used, it needs to be sufficiently powerful to overcome the slipping clutch and drive the lead screw, without the advantage of th reduction gearbox that the servo moto
employs. There is no requirement for it to be vibration-free or quiet running like the servo motor, so a relatively robust and inexpensive motor can be used.
The new arm is of the same aluminium alloy as the Mk 1, HT30TF, which is a
hard alloy fully heat-treated and cannot be manipulated (eg drawn, bent or compressed) in the usual way withou cracking. The diameter of the 9.5 mm tube was chosen to give an increase in overall
stiffness over the Mk 1 arm. Wall

Alternative to original parallel track comprising two steel rods is easier to make
you have an electric drill and stand.

thickness remains the same at 22s.w.g.
The cartridge holder design has been mod The cartridge holder design has been mod-
ified to fit directly onto the end of the tracking arm instead of sliding along it. is a mere 55 gm .

Inertia of arm
without cartridge
The inertia of the arm from pivot to stylus position can be assumed as that of a uni-
form circular cylinder 18 cm long, ignoring -difference in mass between cartridge -difference in mass bet
holder and tubing. This is

$$
I_{\mathrm{arm}}=M\left(\frac{a^{2}}{4}+\frac{l^{2}}{3}\right)
$$

where a is the cylinder radius, l the length and M the total mass, and $I_{\text {arm }}$ the inertia about the pivot. Substituting the value
10 gm for $M, 18 \mathrm{~cm}$ for l and ignoring a 10 gm for $M, 18 \mathrm{~cm}$ for l and ignoring a
(which is small) then $I_{\text {arm }}$ is $1080 \mathrm{gm} \mathrm{cm}^{2}$. To this must be added the inertia of the counterweight, $I_{\text {cw }}$, about the pivot. Using
the same formula and substituting the the same formula and substituting the
values 80 gm for $M, 2.5 \mathrm{~cm}$ for l and 1.2 cm values 80 gm for $M, 2.5 \mathrm{sm}$ for l and 1.2 cm
for a then I_{cw} is 185 gm cm measurements for a and l are taken with the arm in the equilibrium position without the cartridge. Thus the total
inertia is $1080+185 \mathrm{gm} \mathrm{cm}^{2}=1265 \mathrm{gm} \mathrm{cm}^{2}$ inertia is $1080+185 \mathrm{gm} \mathrm{cm}^{2}=1265 \mathrm{gm} \mathrm{cm}^{2}$
Now $M_{\mathrm{e}}=I_{\mathrm{tot}} / R^{2}$, where M_{e} is the mass Now $M_{\mathrm{e}}=I_{\text {tot }} / R^{2}$, where M_{e} is the mass
referred to the stylus point, $I_{\text {tot }}$ is the total inertia of the arm about the pivot and R is the pivot to stylus distance. Substituting the values $1265 \mathrm{gm} \mathrm{cm}^{2}$ for $I_{\text {tot }}$ and 18 cm
for R, then M_{e} is 3.9 gm .

Comparison of new arm with conventional arm As R and l are roughly equal in any arm, the terms in R^{2} cougcel out in the equation for M_{e} which becomes $M_{\mathrm{e}} \propto M$. Thus if the same tubing is used for both an 18 cm arm and a 23 cm arm, then the overall mass
will clearly be less for the 18 cm arm. The will clearly be less for the 18 cm arm. The
actual figure is 22% less; but is not meaningful for the reasons given below.
More important is the large reduction in inertia for the 18 cm arm. As $I_{\text {arm }} \propto R^{2}$ a
small reduction in R will lead small reduction in R will lead to a large
reduction in $I_{\text {arm. }}$ A simple calculation reduction in $I_{\text {arm }}$. A simple calculation
shows that an 18 cm arm will have 39% less inertia than a 23 cm arm made from the same material.
This effect is exaggerated by the cartridge being mounted at the very end of
the arm. The inertia I_{c} of a cartridge of mass M_{c} at ther end of an arm length R is $M_{\mathrm{c}} R^{2}$. A typical cartridge of mass 5 gm mounted at the end of an arm of 18 cm has therefore an I_{c} value of $1620 \mathrm{gm} \mathrm{cm}^{2}$ due
solely to its solely to its own mass. The same cartridge value of $2645 \mathrm{gm} \mathrm{cm}^{2}$!
Because the manufacturers of conventional arms cannot influence the mass of the cartridges as made by the specialist arm designs without running into other problems, most of them attempt to reduce inertia by using exotic materials for con-

One way of achieving faster traverse is to
use a second, inexpensive, motor with use a asecond, ine
slipping clutch.
struction, or by using ultra-thin walled tube. As has been shown above, this is thed least effective method of reducing inertia because it only reduces M. The most effective method is to shorten the arm, because of the presence of R^{2} in the inertia equations.
marketing appeal exotic materials has good rounding titpeal because of the aura surdoes not make good carbon fibre etc. but it costs a lot for little economic sense as it costs a lot for little gain. Using thinner
sections is not sections is not good practice because the
arm becomes less able to withstand the arm becomes less able to withstand the
knocks and bumps of everyday use. Also, the thinner the material, the more likely it is to flex
In the design of the new arm, the design principle has been quite different. A relati-
vely robust straight stiff vely robust straight stiff tube has been
specified to give good rigidity. A light-

weight but inexpensive material has chosen to get the economics right, and give reasonable overall mass. But more important, the arm length has been specified to give a large reduction in overall inertia
without running into the problems without running into the problems asso
ciated with arms that are too short (e.g. stability, and the need for fail-safe tracking in case of servo failure).
This approach provides all the potential for a radical improvement
over the conventional arm.
Of what practical importance is M_{e} ? Firstly it influences the resonant frequency of the pickup arm and cartridge combination, according to the equatio $f_{0} 1 / 2 \pi \sqrt{M_{e} C}$ where C is the compliance
of the stylus. With modern high compliance cartridges a low value of M_{e} is a prime requirement for avoidance of resonance problems. (See page 64 of Apri 1978 Wireless World for an analysis of thes problems.)
Secondly,
Secondly, M_{e} influences record wear as
mentioned earlier. Take the case of a record with a 1 mm warp, which is not an uncommon amount even on a new record. This is taken to mean 1 mm up and 1 mm in the following calculation.
For every revolution the record surface has to work against M_{e}, the work done against g by moving distance d being $M_{\mathrm{e}} d$ ergs. In this case d will be 0.2 cm . Now,
one state-of-the-art conventional one state-of-the-art conventional tracking
arm that has just appeared on the market has an M_{e} of just 9 gm . If a typical disc of 650 grooves is played say once a week for five years with this arm then the work done against M_{e} will be $315,900 \mathrm{ergs}$. This is equivalent to lifting a 63 kg man approxi-
mately 5 cm into the air. Remember, this work is being done by the delicate playing surfaces of the record! If the same disc is played with a parallel-tracking arm of M_{e} only 4 gm , then the work done will be only
140,400 ergs, or 56% less. These figures speak for themselves.
Carbon fibre, neoprene cord, Nylon 66, and Carbon fibre, neoprene cord, Nylon 66, and
other components are avaiable from J. Biles
Engineering, 120 Castle Lane, Solihull, West
Midland B92 8 RN.

Digital storage and analysis of speech

1 - Storing waveforms digitally
by lan H. Witten, M.A., M.Sc., Ph.D., M.I.E.E. University of Calgary

One of the difficulties with digital speech storage and analysis is that new signal-processing techniques
have been developed to handle digital signals. Since these only appeared recently, and are rather mathematical, they are not understood very widely Concepts like the z-transform, the discrete Fourier transform, and digital
filters are quite unfamiliar to many practising electronic engineers. Although there are several textbooks on the subject, nearly all of them treat it in a frighteningly theoretical and abstract way. The aim of this article is down-to-earth manner by putting them in the practical context of the speech waveform.
Computer-generated speech is still a rather esoteric subject, despite the explosive growth in practical applications that we are witnessing. Texas Instrument's Speak 'n
Spell toy - now about three years old -is probably the best example of a consumer device that uses speech output. But there are others. Cheap speech synthesizers in-
tended for hobby computers have been on the market for several years now, as has a talking calculator. Digital transmission of speech is used in the telephone netw and the new System X exchange developed digital form to guide the user and tell him what is happening to his call. Note tha analogue storage of speech has been used in the telephone service for many years, for even bedtime stories.

Analogue storage of speech. The mos familiar device that produces speech output is the ordinary tape recerder.
However, this is unsuitable for speech out put from computers. One reason is that it is difficult to access different utterance quickly: although random-access tape re corders do exist, they are expensive and of the stresses associated with frequent starting and stopping.
Storing speech on a rotating drum instead of tape offers the possibility of access to any track within one revolution time. For example, the IBM 7770 Audio Res-
ponse Unit, employs drums rotating twice a second which are able to store up to thirty-two 500 ms words. These can be
accessed randomly, within half a second at
most. Although one can arrange to store longer words by allowing overflow on to an
adjacent track at the end of the rotation period, the discrete time-slots provided by this system make it virtually impossible fo it to generate connected utterances by as sembling appropriate words from the
store. Cognitronics Speechmaker has a
The C similar structure, but with the analogue speech waveform recorded on photo graphic film. Storing audio waveforms op tically is not an unusual technique, for this is how films. The original version of the "speaking clock" of the British Post Office used optical storage in concentric tracks on flat glass discs. This was developed in the mid 1930s, and synchronization of utterances with real time was achieved in
an intriguing manner. A 4 Hz signal from a pendulum clock was used to supply current to an electric motor, which drove a shaft equipped with cams and gears that rotated the glass discs containing utterances for seconds,
a second reason for avoiding analogue storage is price. It is difficult to see how a random-access tape recorder could be in corporated into a talking pocket calculato ing the cost Solid state electroniss is much cheaper than mechanics.
But the best reason is that, in many applications of speech storage, it is neces sary to form utterances by linking togethe feasible for example, to store every pos sible telephone number as an individual recording! And utterances that are formed by linking individual words which were recorded in isolation, or in a differen For example, in an experiment performed in 1960 , individual words were recorded on acoustic tape, which was spliced with the words in a different order to mak sentences. The result was played to subjects who were scored on the number of
key words which they identified correctly. key words which they identified correctly.
The overall conclusion was that while embedding a word in normally spoken sentences increases the probability of recognition (because the extra contex gives clues about the word), embedding
word in a constructed sentence, where in tonation and rhythm are not properly ren dered, decreases the probability of recognition. When the speech was uttered
slowly, however, a considerable improvement was noticed, indicating that if the
listener has more processing time he can overcome the lack of proper intonation and rhythm.
Nevertheless, many present-day voice
response systems response systems do store what amounts to a direct recording of the acoustic wave.
However, the storage medium is digital rather than analogue. This means that standard computer storage devices can be used, providing rapid access to any seg ment of the speech at relatively low cost for the economics of mass-production en
sures a low price for random-access digita devices compared with random-acces analogue ones. Furthermore, it reduce the amount of special equipment needed for speech output. One can buy very cheap
speech input/output interfaces for home speech input/output interfaces for home hobby buses. Another advantage of digital over analogue recording is that solid-stat r.o.ms can be used for hand-held devices which need small quantities of speech Hence this article begins by showing how
waveforms are stored digitally, and then describes some techniques for reducing th data needed for a given stretch of speech.
Digital storage. When an analogue signal is converted to digital form, it is made discrete both in time (sampling) and in amplitude (quantizing). Much of the theory of digital signal processing investigates signals which are sampled but no
quantized (or quantized into sufficiently quantized (or quantized inacuracies). The
many levels to avoid inaccurn operation of quantization, being non linear, is not very amenable to theoretica analysis, since it introduces issues such a accumulation of round-off noise in arith
metic operations, which, although they are very important in practical implementa tions, can only be treated theoretically un der certain somewhat unrealistic assump tions (in particular, independence of quantization error from sample to sample)

Sampling

A fundamental theorem of telecommun cations states that a signal can only b reconstructed accurately from a sampled version if its highest component frequency
is less than half the frequency at which the is less than half the frequency at which the
sampling takes place. Figure 1(a) shows how a component of slightly greater than half the sampling frequency can masquerade, as far as an observer with access only
$\xrightarrow{\text { Slighty less than } 2 T} \xrightarrow{\left.\begin{array}{l}\text { Figure } 3 \text { shows how the linear frequency } \\ \text { axis for continuous systems maps on to a }\end{array}\right)}$

$\xrightarrow[\text { Slightly greater than } 2 T]{ }$
(a)

(b)
ig. 1 Different sine waves which appear
esame when sampled the same when sampled
(a) components near half
frequency
(b) a component at just under the sampling
frequency and its low-frequency
nent at slightly less than half the sampling frequency. Call the sampling interval T seconds, so that the sampling frequency is $1 / T \mathrm{~Hz}$. Then components at $1 / 2 T+f$, $3 / 2 T-f, 3 / 2 T+f$ and so on all masque-
rade as a component at $1 / 2 T-f$. rade as a component at $1 / 2 T-\underset{ }{f}$ Similarly, components at frequencies just under the sampling frequency masquerade as very low-frequency components, as shown in Fig: 1 (b). This phenomenon is ften called "aliasing
quency axis continuous, infinite, frewhere two components at different fre quencies can always be distinguished maps into a repetitive frequency axis when the signal is sampled. As depicted in Fig,
2 , the frequency interval mapped back into the band $[0,1 / T)$, as are the intervals $[2 / T, 3 / T),[3 / T, 4 / T)$, and so on. Furthermore, the interval $[1 / 2 T, 1 / T)$ between half the sampling frequency and
the sampling frequency, is mapped back the sampling frequency, is mapped back
into the interval below half the sampling frequency; but this time the mapping is backwards, with frequencies at just unde $1 / T$ being mapped to frequencies slightly greater than zero, and frequencies just
over $1 / 2 T$ being mapped to ones just under over $1 / 2 T$ being mapped to ones just unde
$1 / 2 T$. The best way to represent a repeat ing frequency axis like this is as a circle.

* Intervals are specified in brackets, with a
square bracket representing a closed end of the square bracket representing a closed end of the
interval and a round one representing an open interval and a round one representing an open
one. Thus the interval $[1 / T, 2 / T)$ specifies the
range $1 / T<$ frequency $<2 / \mathrm{T}$.
circular axis for sampled systems. For present purposes it is easiest to imagine the
bottom half of the circle as being reflected into the top half, so that traversing the upper semicircle in the anticlockwise direction corresponds to frequencies increasing from 0 to $1 / 2 T$ (half the sample
frequency), and returning along the lower semicircle is actually the same as coming back round the upper one, and corresponds to frequencies from $1 / 2 T$ to $1 / T$ being mapped into the range $1 / 2 T$ to 0 . As far as speech is concerned, then, we no significant components at greater than half the sample frequency are present. Furthermore, the sampled signal will only contain information about frequency components less than this, so the sample fre
quency must be chosen as twice the high est frequency of interest. The telephone network aims to transmit only frequencies lower than 3.4 kHz . This region will con tain the information-bearing formants, and
some - but not all - of the fricative and some - but not all - of the fricative and through the telephone system degrades its quality very significantly, probably more han you realize since everyone is so accusomed to telephone speech - try the dial a-disc service and compare it with highkind of degradation suffered
Since speech contains significan mounts of energy above 3.4 kHz , hould be filtered before sampling to re move this. Otherwise, the higher compo band and distort the low-frequency information. Because it is difficult to make fiters that cut off very sharply, the sampling frequency is chosen to be rathe iterest; for example, the digital telephon network samples at 8 kHz . The pre-sam pling filter should have a cutoff frequency of 4 kHz ; aim for negligible distortion below 3.4 kHz ; and transmit negligible
components above 4.6 kHz - for these are eflected back into the band of interest amely 0 to 3.4 kHz . Figure 4 shows block diagram for the input hardware.

Quantization

Before considering specifications for the pre-sampling filter, let us turn from sam
pling in time to amplitude quantization This is performed by an a-to-d converter
*See "The Chatterbox," Wireless World 84 and 85 (December 1978 and January 1979), for a simple explanation of formants, frication, and simple exp
aspiration. an analogue voltage (produced by the
sampler) and generates a corresponding binary value as output. The simplest correspondence is uniform quantization, where the amplitude range is split into equal relions by points termed "quantization
levels", and the output is a binary representation of the nearest quantization level to the input voltage. Typically, 11-bit
conversion is used for speech, giving 2048 quantization levels, and the signal is adjusted to have zero mean so that half the levels correspond to negative input voltages and the other half to positive ones. It is, at first sight, surprising that as
many as 11 bits are needed for adequate representation of speech signals. Research on the digital telephone network, for

Fig. 2 How sampling "folds" the frequency

Fig. 3 The circular frequency axis of
sampled systems

WIRELESS WORLD JULY 1981
example, has concluded that a signal-tonoise ratio of some 30 dB is enough to
avoid poor speech quality, loss of intelligibility, and listener fatigue for speech at a normal level. But 11-bit quantization noise ratio than this figure. To estimate its magnitude, note that for N -bit quantization the error for each sample will lie between $\quad-1 / 2.2^{-N}$ and $+1 / 22^{-N}$.
Assuming that it is uniformly distributed in this range - an assumption which is likely to be justified if the number of levels
is sufficiently large - leads to a meanis sufficiently lar
squared error of

$$
\int_{-2}^{2} e_{-2}^{2} e^{-N-1}(e) d e,
$$

where $\mathrm{p}(e)$, the probability density func-
tion of the error e, is a constant which tion of the error e, is a constant which tion constraint, namely tion constraint, namely $\quad \int_{\mathrm{p}(e) \mathrm{d} e}^{2-N}=1$.
Hence $p(e)=2^{N}$, and so the mean-squared error is $2^{-2 \mathrm{~N}} / \mathrm{LL}$. This is $10 \log _{10}\left(2^{-2 N / 12)}\right.$ tion. .
This noise level is relative to the maximum amplitude range of the conversion. A maximum-amplitude sine wave has a ence, giving a signal-to-noise ratio of some 68 dB . This is far in excess of that needed for telephone-quality speech. However, look at the very peaky nature of the typical

Fig. 5 Typical speech waveform
ping is to be avoided, the maximum amplitude level of the a-to-d converter must be set at a value which makes the power of the speech signal very much less than a maxidifferent people speak at very different volumes, and the overall level fluctuates constantly with just one speaker. Exper ience shows that while 8- or 9-bit quantiza tion may provide sufficient signal-to-noise if the overall speaker levels are carefully controlled, about 11 bits are generally re quired to provide high-quality representation of speech with a uniform quantiza

Fig. 6 Piecewise linear approximation
the A-law input/output relationship
amplitude is only $1 / 32$ of the full-scale value would be digitized with a signal-to noise ratio of around 36 dB , which is not above for adequate quality. Even then it is useful if the speaker is provided with an indication of the amplitude of his speech: a traffic-light indicator with red signifying and green too low a value, is often convenient for this.
Logarithmic quantization For the purposes of speech processing, it is formly. This is because all of the theory applies to linear systems, and nonlinearities introduce complexities which are not amenable to analysis. Uniform quantizaion, although a nonlinear operation, is linear in the limiting case as the number of poses its effect can be modelled by assuming that the quantized signal is obtained from the original analogue one by the addition of a small amount of uniformly-distribobove. Usually the quantization noise is disregarded in subsequent analysis. However, the peakiness of the speech signal illustrated in Fig. 5 leads one to suspect that a non-iinear representation, vide a better signal-to-noise ratio over a wider range of input amplitudes, and hence be more useful than linear quantization - at least for speech storage (and Linear quantization has the unfortunate effect that the absolute noise level is independent of the signal level, so that an excessive number of bits must be used if a reasonable ratio is to be achieved for peaky representation like
where x is the original signal and y is the value which is to be quantized, gives a signal-to-noise ratio which is independen cannot be realized physically, for it is undefined when the signal is negative and diverges when it is zero. However, realiza ble approximations to it can be made which retain the advantages of constan
signal-to-noise ratio within a useful range of signal amplitudes, one widely used ap proximation being called called the A-law The idea of non-linearly quantizing a sig nal to achieve adequate signal-to-noise ratios for a wide variety of amplitudes is called "companding", a contraction on signal can be retrieved from its A-law compression by antilogarithmic expansion.
Figure 6 shows one common 8 -bi coding scheme which is a piecewise linear approximation to the A-law. This provides
an 8 -bit code, and gives the equivalent of 12-bit linear quantization for small signal levels. It approximates the A-law in 16 linear segments, 8 for positive and 8 for negative inputs. Consider the positive par of the curve. The first two segments, exactly to 12 -bit linear conversion. Thus the output codes 0 to 31 correspond to inputs from 0 to $31 / 2048$, in equal steps (Remember that both positive and negative signals must be converted, so a $12-$ -
linear converter will allocate 2048 levels positive signals and 2048 for negative ones.) The next segment provides 11 -bi linear quantization, output codes 32 to 47 corresponding to inputs from $16 / 1024$ to
$31 / 1024$. Similarly, the next segment $31 / 1024$. Similarly, the next segment cor
responds to 10 -bit quantization, coverin inputs from $16 / 512$ to $31 / 512$. And so on, the last section giving 6 -bit quantization of inputs from $16 / 32$ to $31 / 32$, the full-scale
positive value. Negative inputs are
converted similarly. For signal levels of
$y=1+k \log x$,

Fig. 4 Block diagram of input hardware for speech digitization
less than $32 / 2048$, that is 2^{-8}, this implementation of the A-law provides full 12-bit precision. As the signal level increases, the mexisimum amplitudes.
Logarithmic encoding provides what is in effect a floating-point representation of the input. The conventional floating-point
format, however, is not used because many different codes can represent the same value. For example, with a 4-bit exponent preceding a 4-bit mantissa, the words $0000: 1000,0001: 0100,0010: 0010$, and $0011: 0001$ represent the numbers $0.1 \times$ respectively, which are the same. (Some floating-point conventions assume that an unwritten " 1 " bit precedes the mantissa, except when the whole word is zero; but his gives decreased resolution around zero - which is exactly where we want the
resolution to be greatest.) Table 1 shows he 8 -bit A-law codes, according to the piecewise linear approximation of Fig. 6, written in a notation which suggests floating point. Each linear segment has a different exponent except the first two seg-
ments, which as explained above are collinear.
Logarithmic encoders and decoders are available as single-chip devices called "couse on digital communication links, these generally provide a serial output bit stream, which should be converted to parallel by a shift register if the data is intended for a computer. Because of the potentially vast market for codecs in tele-
communications, they are made in grea quantities and are consequently very cheap. Estimates of the speech quality necessary for telephone applications indicate that somewhat less than this accuracy
is needed - 7 -bit logarithmic encoding was used in early digital communications links, and it may be that even 6 bits are adequate. However, during the transition period when digital networks must coexist with the present analogue one, it is anticihave to pass through several links, some using analogue technology and some being digital. The possibility of several successive encodings and decodings has led telecommunications engineers to standardize
on 8 -bit representations, leaving some on 8 -bit representations, leaving some
margin before additional degradation of signal quality becomes unduly distracting. Unfortunately, world telecommuni cations authorities cannot agree on a single law, which we have described, is the European standard, but there is another system, called the μ-law, which is used universally in North America. It also is available in single-chip form with an 8 -bit characteristics to the A-law, and would be indistinguishable from it on the scale of Fig. 6.
The pre-sampling filter Now that we have some idea of the accuracy requirements for quantization, let us
discuss quantitative pecifications for the discuss quantitative specifications for the
pre-sampling filter. Figure 7 sketches the
characteristics of this filter. Assume a sam pling frequency of 8 kHz and a range of components at frequencies above 4 kHz will fold back into the $0-4 \mathrm{kHz}$ baseband, those below 4.6 kHz fold back above 3.4 kHz and are e therefore outside the range of interest. This gives a "guard band" be-
tween 3.4 and 4.6 kHz which searates the twass 3.4 and 4.6 kHz which separates the phould transmit negligible components in the stopband above 4.6 kHz . To reduce the harmonic distortion caused by aliasing to the same level as the quantization noise
in 11-bit linear conversion attenuation should be around -68 dB (the signal-to-noise ratio for a full-scale sine wave). Passband ripple is not so critical, for two reasons. Whilst the presence of aliased components means that informacomponents within the range of interest, passband ripple does not actually cause a loss of information but only a distortion, nd could, if necessary, be compensate by a suitable filter acting on the digitized waveform. Secondly, distortion of the passband spectrum is not nearly so audible as the frequency images caused by aliasing. Hence one usually aims for a passband ripple of around 0.5 dB .

Fig. 7 General c sampling filter

The pass and stopband targets we have mentioned above can be achieved with a 9th order elliptic filter. While such a filter is often used in high-quality signal-proces sing systems, for telephone-quality speech much less stringent specifications seem to a template which has been recommended by telecommunications authorities. A 5th order elliptic filter can easily meet this specification. Such filters, implemented by single-chip form. Integrated c.c.d. filter which meet the same specification are also marketed. Indeed, some codecs provid input filtering on the same chip as the a-tod converter.
Instead of implementing a filter by anal ogue means to meet the aliasing specifica-
tions, digital filtering can be used. A high sample-rate a-to-d converter, operating at,
 Fig. 8 Specifications of the pre-sampling
filter for telephone-quality speech
say, 32 kHz , and preceded by a very simple low-pass pre-sampling filter, is followed by a digital filter which meets the desired specification, and its output is subsampled to provide an 8 kHz sample
rate. While such implementations may be economic where a multichannel digitizing capability is required, as in local telephone xchanges where the subscriber connection is an analogue one, they are unlikely
continued on page 59

Table 1. 8 -bit A-law codes, with their float

8-bit codeword

-	- -	-	-	- - -
$\begin{gathered} \text { sign } \\ \text { bit } \end{gathered}$	exponent		mantissa	
codeword			interpretation	
00000000			. 0000×2^{-7}	
00001111			$2^{-7}+.1111 \times 2^{-1}$	
00010000				
0001	1111		$\begin{aligned} & 2^{-7}+.1111 \times 2^{-} \\ & 2^{-6}+.0000 \times 2^{-} \end{aligned}$	
0010	0000			
0010	1111			
00110000			$2^{-5}+.0000 \times 2^{-5}$	
$\begin{aligned} & 0011 \\ & 0100 \end{aligned}$	1111		$\begin{aligned} & 2^{-5}+.1111 \times 2^{-2} \\ & 2^{-4}+.0000 \times 2^{-1} \end{aligned}$	
	000			
01000101	1111		$\begin{aligned} & 2^{-4}+.1111 \times 2^{-} \\ & 2^{-3}+.0000 \times 2^{-} \end{aligned}$	
01011111 01100000			$\begin{aligned} & 2^{-3}+.1111 \times 2^{-2} \\ & 2^{-2}+.0000 \times 2^{-2} \end{aligned}$	
$\begin{array}{ll} 0110 & 1111 \\ 0111 & 0000 \end{array}$			$\begin{aligned} & 2^{-2}+.1111 \times 2^{-2} \\ & 2^{-1}+.0000 \times 2^{-1} \end{aligned}$	
01111111			$2^{-1}+.1111 \times 2^{-}$	
10000000			$-.0000 \times 2^{-7}$	
1111	111		2^{-1}	$-.1111 \times 2$

Negative numbers treated as above, with a Negative nu
sign bit of 1

Long distance television reception

1 - An introduction
by Keith Hamer and Garry Smith

In these occasional articles, the authors will introduce readers to the hobby of long-distance television reception, or DX-tv as it is often called, and pass on their experiences
as dedicated amateurs. This first part as dedicated amateurs. This first part by weather and atmospheric conditions, basic tv set requirements, simple aerials and signa
identification.

There are many factors, such as transmitter powers and terrain, which will influence the range over which a television eral, the strength of the signal becomes weaker as the distance between the transmitter and receiver increases. Reliable reception is normally limited to approximately 70 miles from the transmitter. strengths of signals from the more distant transmitters vary during certain weather conditions. Distant signals, which are normally very weak, may become comparable in strength to that of the local transmitter for a matter of hours, or even days. ceived on the same channel as the local transmitter. This is termed 'co-channel reception' (or interference, depending on whether you are an enthusiast or a viewer). disant signals are connected with variations in the troposphere, which extends from the earth's surface to about $20,000 \mathrm{ft}$ above. For example, when an anticyclonic weather condition exists, together with a
cold front stretching between Scandinavia and the UK, a temperature inversion in the troposphere usually takes place. Temperature inversions enhance long-distance television reception.
Fortunately for the average viewer, but not for the DX-tv enthusiast, widespread
interference on u.h.f. television caused by tropospheric conditions of the type described above is relatively rare. Enhanced reception on Bands I and III is also associated with these conditions.
Ionized patches in the E layer of the atmosphere often cause interference on September. The E layer is between about 60 and 80 miles above the earth's surface. Before BBC 1 transmissions were
duplicated on u.h.f., viewers had to rely on 405 -line UK Band I transmissions, on which sporadic E signals would cause quite
a lot of interference. This interference often manifested itself as a herringbone patern superimposed on the picture which could last for up to several hours. At times, the BBC 1 picture was totally obliterated.
Viewers relying on channel 2 might also Viewers relying on channel 2 might also
have experienced a loud buzz on the sound channel from the video signal of foreign transmissions on the same frequency. Unfortunately, there was little the viewer could do apart from switch over to ITV or
turn off the set! Later, in some areas, the BBC duplicated their BBC 1 transmissions on higher frequencies in Band III to help overcome the problem.
If the viewer was curious enough to tune through the Band I frequencies while spo-
radic E signals were present, he/she would obtain video information resembling a mass of unlocked white lines without the sound channel. At other frequencies, a distorted sound signal may have been present. The reason for the unlocked video is
fairly simple: The 405 -line system, as used on the v.h.f. channels in the UK, employs positive video modulation whilst most Continental countries employ a 625 -line system with negative video modulation. 625 -line system but with different sound and vision spacings and channel bandwidths. Also, most Continental countries employ the 625 -line system on both v.h.f. and u.h.f. channels, unlike our own
system which is only used on the u.h.f. system which is only used on the u.h.f.
channels. We will cover the difference in transmission standards in greater detail in a subsequent article.
Some readers will have already realised that, as the European 625 -line system is times, be able to resolve u.h.f. television signals from the Continent on a standard u.h.f. receiver designed for use in the UK. This is precisely the case and if your existing u.h.f. receiving aerial is already
directed towards the Continent, you should be able to receive Continental transmissions when the right atmospheric conditions exist. It is unlikely that the sound channel will be received because of the different sound and vision spacings in
use but good quality colour pictures may be received. It is possible to re-tune the sound stages of the receiver but, unless you are well versed in foreign languages,
there is little point * there is little point.*
Resolving signals enhanced by sporadic

* On Dutch television many programmes are in English
with Ducth subtites.

Fig. 1. A simple dipole for frequencies

E in Band I is slightly more difficult due to the greater differences in transmission standards. We have already said that a 625 line signal received under sporadic E conditions will show up as a mass of unlocked
white lines when displayed on the screen of a British receiver operating on 405 -lines v.h.f. To resolve these signals the receiver will need to operate on the 625 -line system but with the tuner covering v.h.f. frequencies. Fortunately the problem can be Certain portables are available which were originally intended for the European market. These sets have 625 -line coverage on Bands I and III and this is probably the easiest way round the problem.
If an old dual-standard receiver is on selection, that is u.h.f. to v.h.f., is independent of the system switch setting. The system switch is left permanently in the 625 -line position.
it is possible to fit an additional inexpensive tuner and incorporate a change-over switch at the i.f. input to select the output from the existing u.h.f. tuner or the addi-
tional v.h.f. tuner. The latter two suggestions will of course depend on the competence of the individual to carry out such modifications.
Another way is to employ a frequency converter which is connected directly to
the aerial input of a single-standard receiver. Such converters are sometimes used in conjunction with communal aerial distribution systems, in which translated u.h.f. signals are distributed at v.h.f. fre-
quencies, to minimise cable losses, and a quencies, to minimise cable losses, and a
converter at the receiver converts the sigconverter at the receiver convers to u.h.f. Hence, if we feed the input of the converter with a DX signal in Bands I or III, the unit will translate the signals to a u.h.f. frequency to enable a single-standard receiver to be used for
both systems. Suitable converters may be obtained from aerial suppliers currently advertising in various magazines.

50
WIRELESS WORLD JULY 1981

4 Fig. 2. Th Fig. 2. The Philips PM5544 electronically
generated test pattern. This photograph generated test patterr. This shotograph,
taken directly from the screen, shows typical reception qualitity of the Italian $R A$
under sporadic E conditions.

WIRELESS WORLD JULY 198

LETNEESS TO TMYE EDITOD

CB PIRATES - OR
PROTESTERS?
In your ediorial in the May issue you were
rather hard on the c.b pirates If rese tather hard on the c.b. prates. p If reasonabol
request is unreasonably refused it is unteasonable to expect the applicant to accept the deci-
sion. The applicant therefore has a moral right sion. The applicant therefore has a moral right
to ignore the decision and the blame for the to ignore the decision and the blame for the
consequences lies with the person who made the wrong decision.
You uadmit the request for a citizenss' refusal of the Home Office was unreasonable The blame for the effects on the community Herefore rests with the negigent robots in to grumble at the expense of changing to the new system. Inded, if ifgoic ruled the world the
officials in the Home office would be made to pay for the new equipmen out of their own
pockets. That would teach them to be reason-

$\underset{\substack{\text { S. Frost } \\ \text { Edinuurgh } 2}}{ }$
JAMES CLERK
MAXWELL
Mr Wellards recent two-part appreciation of
James Clerk Maxwell pubbished in your March James Clerk Maxwell pubished in your Mar
and May issues was rather forceful in depreciating the work of Albert Einstein. Undoubtedly it
will evoke reaction from the disciples of Relativwill evoke reaction from the disciples of Relativ-
ity but, in my view, Wellard is to be applauded ity but, in my view, Wellard is to be applauded
for his forthright contribution. It was indeed deplorable that the 1979 celebration of the cenenary of Einstein's birth did not take into acsame year. More of the point, however, it is same year. More to the point, however, it is
fitting to note that in 1980 experimental proof showing that the ether can assert a force was
reported in Nature (G. M. Graham and D.. G. reported in Nature (G. M. Graham and D.. G.
Lahoz, Nature, 285, 154 (1980) and it was Maxwell and not Einstein that was supported. I hope we will see further acceptance of Max-
well's principles in the hars regard to the third of the four alternative empirical laws of electrodynamics presented in Maxwell's treatise. This particular law is an inverssquare law of attraction with force actin
directly between like charged bodies when moving at the same velocity. It can, therefore,
give physical basis to Newton's law of gravitagive physical basis to Newton's law of gravita
tion and may even extend to provide accor
. with the equations, but not the underlying philosophy, of General Relativity (H. Aspden, 3 Lopophy, of General Relativi,
hyss A, 13,3649 (1980))

C. Aspden

Southampton

It pains me to find two glaring fallacies in M. G. Wellard's discussion in the March issue of the Michelson-Morley aether-drift experiment as it is generaly a frequen in ably peculiar to Mr Wellard alone; the second, that the Doppler effect may be produced by the appears to be quite widely held.
With respect, I would merely comment on
the first fallacy by saying that a fortune awaits
the first fallacy by saying that a fortune awaits
the inventor of so simple a means of providing
the inventor of so simple a means of providing
superheterodyne radio reception; for the second
fallacy, may I perhaps be granted a slightly more comprehensive comment? For our argument we require confidence in one assumption,
however: that energy manifested in a simple cowever: that energy manifested in a simple
coherent wave train may be represented by a set
of uniform material objects, which may be arof uniform material objects, which may be ar-
ranged in a regular pattern in space and in partiranged in a regular pattern in space and in parti-
cular in a line representing the line of advance of the wave, each object standing for either a peak, zero-crossing or other phase-state. We could construct a mechanical model, then, with a intervals onto a straight level track, along which they would propel themselves at a steady velocity to a reception device with a counting mechcounter on the launcher. We could then say what is the frequency of dispatch, and of arrival at the receiver, and how many balls are in face of a continuous transporter-belt, and that this is set to run steadily towards the launcher (to match Mr Wellard's example); what would
then have changed? Not necessarily either the rate of dispatch or arrival at the end of the track. The balls would be more closely spaced along he track, in accordance with its speed, but hey more slowly in a compensating measure. Would we expect to detect the equivalence of the Oppler-effect in this model?
Now suppose the belt to be halted, but either
 necessarily the rate of dispatch. But the rate of reception would have to change, because the
number of balls in transit would be constantly changing in proportion to the speed with which
the effective track-length was either increasing he effective track-length was either increasing or decreasing. Now could we be said to recog-
ise the change of frequency at the receiver of this model as the equivalent of the Doppler Surely
Surely the implication of this, and of Mr e in some detasion (erroneous though it may aether-drift "experiment" were suspending so, the members of the scientific faculties have been somewhat slow in offering criticism of this haps. Perhaps it is pertinent to mention here should be subjected to closer inspection; the use of a "control" beam of light propagated in static water, to be compared with its "twin" in water
flowing in either one or the other direction relaowing in either one or the other direction rea-
ive to the light's direction would, I rather suspect, provide indications against the drag ypothesis
To conc
To conclude, could I suggest, with all due needed if the scientifific ideal is to be upheld, but hat criticism should be more critically exa-
mined before publication? And that applies to his, if it is considered worthy of print! If by trial and error we may learn, then let us rs - and then learn to C. B. V. Francksen

Farmberoue
Hants
he author replies:
In C. B. V. Francksen's working model of the
Michelson and Morley experiment the Michelson and Morley experiment the balls
represent the energy of consecutive cycles of a
light wave, the launcher the source of light and the semi-transparent mirror, the 1 eceiver represents the reflecting mirror, and the stationary or noving track represents the stationary or
moving ether. The model can be improved by allowing the launcher and receiver to change positions when the light beam is reflected in the experiment. In the fourth parazaph of analogous with the frequency changing effect of he moving reflecting mirror.
Mr Francksen need have no fear that his
etter is unworthy of print. paragraph he has pinpointed the basic flaw in The reasoning that gave rise to the experiment. The history of this experiment is dealt with by 261 onwards. Fresnel had explained the phenomenon of stellar aberration by assuming the Arago discovered that thid not Arago discovered that this phenomenond
occur when light passed through a prism, Fresnel said that the ether was trapped within the
volume of the prism and dragged volume of the prism and dragged along the
light. Fressel calculated his dragging coefficient', and by passing light through a moving column of water Fizeau proved Fresnel's dragging coefficient'. The moving volume of
water dragged along the light wave. Stokes had already proposed an alternative theory to explain stellar aberration - the ether was dragged
along by the moving Earth - and Stokes's long by the moving Earth - and stokes'
theory cannot explain Fresnel's dragging coefficient'.
Michelson and Morley ignored Fresnel and Earth created an ether wind. If the MichelsonMorley experiment is repeated, effectively immersed in a flowing volume of water, their inM. G. Wellard

TELEVISION FOR
NO-SIGNAL AREAS
Mr Osborne's case history of a practical applica-
ion of an 'active deflector' system (May issue) was read with great interest but with some ap-
prehension This article could well sive the impreshionion. That such sctichemes are are very simple and demand little more than redundant aerials, salvaged coaxial cables and modified standard
television distribution amplifiers employed with ingenuity by an experienced amateur.
My company has become very involved with 'self help' schemes and supplies standard, and specialised equipment together with engi-
neering advice and assistance where necessary, As a result of our involvement and experience, I would like to make the following points: . Communities forced to consider 'self help
systems, usually of populations less than 200 , are entitled to the best possible television eption, with a target of standards comparab to well-engineered cable systems.
2. Cable systems should be used whenever possible with the advantages of multi television channels, v.h.f./f.m. radio, 'teletext operation and provision for future channel services.
3. Active deflector systems should be engineered to the same standard as cable systems, where we comply with BS 5603 and CTVR1/1. Due regard must be paid to filtering of received
channels, minimum transmitter power, and cal-
culation of s / x and s / n ratios, for broadband culation of s / x and s n ratios, for broadoand
amppifiers, relative to all k kown variations of
signal levels due to 'off air' and cabléequipment signal levels due to off
temperature variations
4
Lemperature variations.
4. As advised under "Licences", full use should
be made of the BBC/IBA transmitting authori 4. As advised under Licences , full use should
be made of the BBCIIAA transmitting authori-
ties, who share the difficult task of assisting the ties, who share the difficult task of assisting the
remaining unserved 0.1% population not
catered for under Phase 3 of the UK television remaining unserved 0.1% population not
catered for under Phase 3 of the UK television
coverage plan which is projected to 1986 . coverage plan which is proiected to 1986 .
Please be assured that this is not a criticism of Please be assured that this is not a criticism of
Mr Osborne's article and successful endeavours. V. Lewis Wolsey Electronic
Porth, Rhonda
Mid Glamorgan

SCIENCE AND SOCIETY The quotation from the policy statement by the
British Society for Social Responsibility in British Society for Social Responsibility in
Science (BSSRS) in May letters contains serious ambiguities, if not explicit errors, which do
great harm to the Sociert's good cause, and great harm to the society's good cause, an
which must therefore not pass unchallenged The policy statement declares: "Science is no neutral. It cannot be separated from politics.
both reflects and helps to determine the value of society." Now if the term "science" is used to denote the activities of the members of a social
group known as the "scientific community group known as the "scientific community"
then these assertions are essentially true. Fo the activities in question are inextricably linked to the society within which they take place.
"Unfortunately, the definition of science as
"the set of atl "the set of all activities by scientists" is rather problematic, because one will then have to specify what this peculiar breed of social
species, the scientist, is. And if one naturally species, the scientist, is. And if one naturall
says that the scientist is a person who practise science, then the circle becomes obvious. In
fact, there has taken place inside BSSRS fact, there has taken place inside BSSRS a de
bate on whether "Science is a labour process" "Science is not just social relations" (see Science
for People No 43/44, for People No 43/44, 1979.) Sadly, it is now
evident that the former slogan has overwhclm evident that the
ingly prevailed.
I would argue that the BSSRS in particular,
and a wide spectrum of political and philosoand a wide spectrum of political and philoso-
phical opinion in general, in going out of their phical opinion in general, in going out of their
way to stress the social influences on scientific
research and the impact of scientific discoveries way to stress the sopact of scientific discoveries
researh and the impon socity, have been carried away by their
upor bubbling enthusiasm for radical or revolu
tionary policies, have thus missed the more funtionary yoliciess, have thus missed the more fun-
damental content of the meaning of science, have therefore fallen inevitably in serious errors
and so have generated and so have generated a great deal of dangerous
confusion. Science is best defined as, in the first place,
objective knowledge, plus, in the second place, objective knowledge, plus, in the second place,
the activity to enlarge, and make use of, this
permane and universal knowledge. Scientifi permanent and universal knowledge. Scientific
obiectivity stubbornly and irrefutably exists and refers to the permanent and universal
knowledge of facts and phenomena of nature which are independent of any individual's which: political affiliations, ondeological persua-
whions, moral convictions, religious belief, and sions, moral convictions, religious beliefs, and
so on. Facts and phenomena of nature are so on. Facts and phenomena of nature are al-
ways the same for every member of the human race.
If one disregards, as so often is the case, the
. existence of objective knowledge (upon which
all scientific activity, of any political orientation must securely rest) one will unhappily be forced
to say that science is just another ide to say that science is iust another ideology, a
mere branch of politics, not better and not mere branch of poiitics, no better and not
worse than religion, ethics, and the like. It is true that scientific facts are discovered usually
as a result of the activities of scientists which as a result of the activities of scientists, which,
we agree, are prone to (good or bad) political
influes. we agree, are prone to (good or bad) political
influences. It is also true that there are certain

Ifficulties in one's attempt to state the scientif al, theoretical, and linguistic limitations or uncertainties, and independently of any political context. For these reasons, many people, not
being competent enough to surmount these dif ficulties, and having gone out of their way to lay reat emphasis on the political influences on that objective facts do not exist, and they have declared that one cannot separate (the sup posedyy certain facts from uncertain theories o feelings about these issues, and suggest tha those who are incapable of distinguishing fac from theory or from context should admit their themperencence, rather than cy
The mix-up between science and ideology is
confounded by the fact that all sorts of dubious science (e.g. race and IQ studies, astrology cosmology) or faulty science (e.g. relativity, duality) are frequently mistaken as authentic
science. This badly misguides philosophers into creating dismally erroneous theories of science. Conversely, the realization of the full extent of the confusion between science and ideology
necessary if one wishes to understand why im possible hypootheses have been foolishly accepted as tenable and even as true ones (especially in the sphere of theorerical physics),
Twee most striking instance of the mix-up be-
tweience and ideology, and that which gen tween science and ideology, and that which gen-
erated the greatest harm is the following: Many
elements of so ity, quantum) were rejected by the Nazis be cause many (but by no means all) of their creators happened to be Jews or socialists o both. In this way, the military defeat of Hitle physics. As Hitler was (morally) wrong, thos who criticise modern physics must be (scientif
cally) wrong, too. This is one reaso why cally) wrong, too. This is one reason why so
much scientific criticism of relativity went into deaf ears. The sooner these and other facts are
recognised recognised, the earlier the vagaries of relativity
will be retired to their well-deserved resting will be retired to their well-deserved resting
place in the history of science, next to epicycles, phlogiston and the like.
By speaking out in this way, I run the risk of
being dubbed a reactionary. But for the sake of truth I do take the risk and I suggest that BSSRE should correctly understand first the full and exact meaning of science, if they really want
to ensure, as I do, that science serves the to ensure, as I do, that science serves the peopl
as a whole. And I earnestly appeal to the com rades of the BSSRS to re-examine the issues I have raised with their brains, not with thei hearts; otherwise they will continue to alienate
the rank and file scientist, and allow the political establishment to strengthen its position.
T. Theocharis T. Theocharis
London SW18

ENGINEERING
 EDUCATION

The article by Professor D. A. Bell in the Jan uary issue reviews the technologist vs theoreti-
cian question. In the USA we have recently taken a different path, with separate schools and degrees for technologists and engineers Whether this is better or worse than the drop
down to "pass" level of the UK is yet to be down to "pas
determined.
The question is so old that it should have
been solved. This is shown by the editorial in your near-relative publication, The Electrician. in volume 21 , page 579 , September 14, 1888: "Lord Armstrong, like most captains of industry,
knows exacly what he wants and how to getit but he
is rather afraid of getting more than he wants, which he
probably would do if Sir Lyon Playfair had his own
 needed; Sir Lyon Playfar would scaiter these accom-
plisments broadcast in case they may be needed. "We suspect that the chief falue of tec chnicald raining the eter his contion of the artisisn is that it wwill help him The case of 39,000 workmen being thrown out of
employment by the invention of a new method of making steel does not hinentp the a argument, unless we a to believe that those men woulum have been kepptin
work had they understood the process as well as Bessemer.
"The learned cioctor hopes to creare an unlimited
supoly of Wats, Stephensons, Arkwrights, Cart-
 nical education, whilst his practical opponent appre-
hends that there would be nobody left to work their inventions if we wucceededed, and everyybody left discon

Somehow, I feel that a definition of inertia musty old volume, applies. This is attributed to
Prof Ayrton: Prof Ayrton:
"There are two possible definitions of inertia: in this
ountry (England it it it defined as resistance to motion, ca as resistance to standing still."
It appears that the motion on this question
has been a circular orbit for 92 years, and it is uime that we selected a re-entry poin!!
f.D. Ryder
Ocala
ume that

Florida, USA
The writer was formerly Dean of Engineering at M.
chigan State University, USA - Ed.
The author replies:
the problem has been with us for nearly D. Ryder cannot give an authoritative answer one's first reaction is that the problem is insolu-
ble. However, I think it is worth while pointin ble. However, I think it is worth while pointing
out that my remarks were made within the out that my remarks were made within the
context of the British university system. Firstly it appears that as the comparison between
"technom "technologist" and "engineer" in American ter
minology is set against our honours pass discri minology is set against our honours/pass discri-
mination, it must distinguish between "techni mian" and "professional engineer" rather than between "technologist-engineer" and "eng
neer-scientist". (In Britain the term "technolo neee-scientist". (In Britain the term "technol.
gist" is of top ranking and covers both profes sional engineers and their cquivalents in other-
types of technology in types of technology, in contrast to "technician"
which implies lower academic standing, whatwher the vilue lower, academic standing, what
evastry and to society. ever the value to industry and to society.
Secondly, all British universities have in theory the same academic standards: this is supposed
to be ensured by the general use of the system of to be ensured by the general use of the system on
external examiners, i.e. every degree examinaexternal examiners, i.e. every degree examina-
tion is monitored by a senior member of some other university. None the less, special prestig
attaches to some universities: one might perhap attaches to some universitites: one might perhap
compare Oxford, Cambridge and Imperial Col lege with Harvard, Yale and MIT. The inhibition here of any further discriminatory classi-
fication is part of a very deep-rooted reluctance fication is part of a very deep-rooted reluctance
in Britain to declare openly that anyone is in erior to others. or is finally and dirrevocably judged incapable of reaching the highest level.
A personal view is that the British university pass degree is too often no more than a safety
net for those who for net for those who (for one reason or another) fail
to reach honours standards It is responsibe for the comparatively low drop-out rate from
British universities. British univarsisities. (The system of financial
grans to sudents grants to students must also influence drop-out
rates.) There is little doubt that separate institurates.) There is little doubt that separate institu-
tions could produce better technicians, but th question is how much human unhappines
would be created by the forcible separation of
school leavers high-school school leavers (high-school graduates in US ter-
minology) into two streams, professional engi-
neers versus technicians. It would depend partly on the opportunities for exchange between th wo streams, which would seem to be minimised if separate institutions are involved. In any case,
I do not believe that the vocational content of ducation is such an important factor in national
prosperity as is sometimes assumed, for prosperity. as is sometimes assumed, for
example in the Finniston Report on engineering education.

RADIO AMATEURS'
EXAMINATION
was glad to see the validity of the Radio Amateurs' Examination queried at last (May issue,
p.54). Since the Nuffield foundation introduced many changes - even corrections - in the way Physics is taught, many examiners have rong, and marking it so. "Traditional" and "modern" answers to a uestion such as "describe the changes which the place when a capacitor is discharged
hrough an inductor" may be quite different at first glance, whilst both could be right. Unforunataly there are too many in authority who would dismiss the latter.
W. . W.H.J
Preston
Lancs

I agree with Pat Hawker (May 1981 issue) that Amateurs' Examination Paper 2 were Radio able, but that is about the only point with which 1 can agree. Even his comment about the proposed c.b. arrangements permitting radiotele-
phony on 27 MHz whilst Amateur Licence B holders may only operate on frequencies above 30 MHz has no relevance since the amateur service is an international service while c.b. is a
national one and completely different considerations apply. However, this is no concern of the City of Guilds of London Institute.
I would very much like to see RAE question
papers published but the City and Guilds of papers published but the City and Guilds of
London Institute has its difficulties here which are entirely connected with the integrity of the examination and are not due to a desire for
secrecy in the way the examination is secrecy in the way the examination is
conducted. One is tempted to ask whether what Mr Hawker calls his good fortune did not, in fact, arise from someone breaking faith with ndertakings given to the Institute. written type examinations where enly a very few topics from the syllabus could be tested at each
examination? In spite of being reasonably well examination? In spite or being reasonably well
prepared a candidate could find that the ques-
tions prepared a candidate could find that the ques-
tions were all on his weakest topics and he or she had no opportunity to demonstrate their strong
points.
The present multiple choice scheme tests The present multiple choice scheme tests very examination and candidates know they
will have a chance of demonstrating their will have a chance of demonstrating their
strongest topics as well as being tested in the strongest topics as well as being tested in the
weakest. As long as they have as many strong
topics as weak ones they have some chance of topics as weak ones they have some chance of Multiple choice questions were not dreamed
up for the RAE; they have been widely used for many years and the principles are well estab
lished. The setting up of a bank of question items is a long process and each item is tested and edited at seeveral stages and finially pre-
tested by volunteers in a mock examination before being accepted for the bank. fore being accepted for the bank.
The question items are so constructed that
the correct answer cannot be selected simply
because the alternatives are obviously wrong.

Each option offering an incorrect answer must
have some credibility so that the candider use knowledge of the topic to select which of the options is correct in all respectst and fully an-
swers the stem of the question . ions typical of those expressed by candidates in the pre-1979 written answers are used in the incorrect options to give them credibility.
Multiple choice is not an easy way out and the candidate needs as much knowledge of the syllabus as he or she did when writing essay type
answers. If all this is thought to be unfair to answers. If all his is thought to be unfair to
candidates, what is the explanation for the candidates, what is the explanation for the
number of candidates having increased from about 1850 in May 1978 and 900 in December 1978 to some 3000 in May 1980 and 2800 in
December 1980 and that the percentage of Deccember 1980 and that the percentage of
successful candidates has increased slightly? As regards syllabus content, there has always
been a section on electrical theory and it has been a section on electrical theory and it has
always been supported by lecturers and other always been supported by lecturers and other
interested bodies, in particular the RSGB, as being valuable groundwork. The volume of such theory has been reduced over the years as
technical considerations have changed and the units now involved consist of volt, coulomb, ampere, ohm, watt, hertz, farad and henry and
this does not seem excessive. Neither does there his does not seem excessive. Neither does there
seem any reason why knowledge of licence conseem any reason why knowledge of licence con-
ditions should be less under multiple choice conditions than it was under written answer conditions.
As regar
As regards valves, the alternative would have
been a massive increase in training time, and I for one see no need to ask would-be radio amaeurs to undertake a two-year training course. City and Guilds Radio Amat
Examination Subject Committee
The views expressed are those of $M \mathrm{D}$ Dunell and not
necessarily those of the Subject Committee. - Ed.
Pat Hawker, G3VA, comments:
Wilfred Dunell seems to have misunderstood
the point of my criticisms of the RAE held in December. I am all in favour of the multiple-
hoice form of examination, although, as in the equivalent American exam, it might be worth adding some requirement for candidates to draw a few very simple diagrams. But there are good
multiple-choice papers and bad multiple-choice papers. Too many of the questions seem irreleentrusted with opether somebody should be ter; and unless one knows the "pass" marks hen one cannot avoid the suspicion that a luck in would have be most useful as carefu preparation.
So I remain ions were either fair or relevant; that it is rid culous to include e oulolombs but omit valves; and with safety. Far from wishing that would-be mateurs should have to take a two-year training course, it would seem better to scrap the RAE
Itogether than to continue to ser such factory papers. As to anyone "breaking faith" to show me the papers, surely such a charge would be better levelled at those in any way responsDunell does not comment on the question I

SCIENTIFIC COMPUTER

 in the eighteen months since I first wrote to yo December 1979 issue) considerable evolutionDohn Adams' scientific computer design hat of John Adams' scientific computer design has
occurred.
At the time of my first letter, the high level At the time of my first letter, the high level
anguage available (BAIIC using Reverse Polish

- "BURP") was very restricted in its facilities
and therefore attracted my criticism. Subse-
quently, Mr Adams has made available a Mark quenty, Mr Adams has made available a Mark
II and then a Mark III version of BURP and I understand that Mark IV is about to appear. A
floppy disc interface has been described (Octofloppy disc interface has been described (Octo-
ber and December 1980) and a 32K memory expansion board is about to become available.
The presently available high level language The presently available high level language
(Mk III BURP) represents a vast improvement on the original and has answered virtually all the criticisms I made. It now offers a full range of
variables, multi-dimensional arrays and variables, multi-dimensional arrays and vir-
tually all of the statements that one would extually all of the statements that one would ex-
pect of an "R BAAIC", yet occupies only 4 K
of memory. It is certainly more than adequate
for an "cientif" of memory. It is certainly more than adequate
for all "scientifif", purposes and one imagines
that the Mk IV will be even better. Much of the evolution of the design has been facilitated by the creation of a users' group asso-
ciated with a monthly newsletter. Through this ciated wibl a monthly newsletter. Through this
medium, many advances in hardware firmware and software have been made available to users of the computer; the updated BURP interpreter A avaiable via the users' group.
Anyone still using the original, or even the
Mk II, difficulties. Those wishing to remedy this and or ensure that they keep abreast of future adunces would be strongly advised to contact the
users' group clo Mr Phillip Probetts, 50 Cromusers' group co Mr Phillip
well Road, London SW 19 . What was originally a very sound basis for
development development has now blossomed into a very
satisfactory and useful machine and, as a final comment, I would like to express the e gratitude
of all concerned for the tremendous efforts of ald concerned for the tremendous.
made Mr Adams and Mr Probetts. Yohn Whititington
Norrh Harrow North Harrow
Middlesex

MICROCHIPS AND

MEGADEATHS
was absolutely delighted to read your on the matter and because you have raised the issue in the technical press.
It seems particularly sad th It seems particularly sad that such high levels of effort and intellect must be employed on the
mutually assured destruction of mankind. Those of us who have bothered of inform ourwarfare can do nought but agree that a halt must be called.
fohn B. Gibson

Wonn B. Winchester Hants

am absolutely appalled by the sentiments ex deaths" (Noyember 1980 issue) the arricle in Sidebands (May issue) and a great many of the published letters.
Can any of these
Can any of these people put together a viable programme of action which would be com-
pletely successful in persuading the world's engineers to stop working on "defence" projects?
Obviously no less than one hundred percent success is acceptable, and equally obviously that is not possible.. Lately we engineers have been attempting to
mprove the status of our profession; e .g. the improve the status of our profession; e.g. the
Finniston Report. If we do not wake up and
stop behaving like naive children, we will stop behaving like naive children, we will
neither get nor deserve any respect at all. True engineers have to operate in the real world, not
in the rarefied atmosphere of the ideal one. The only way to preserve world peace is to
maintain a balance of power. The West has
already fallen dangerously behind; therefore en-
 -

. Fack Anderson
Dunmurry
Belfast
Io hope that the proportion of letters in favou y your editorial Microchips and megadeaths
ine November 1980 issue is typical of you postbag and of engineers in general.
I am sorry to recall that, for two years after Eaving university, 1 too worked in decence However, engineers and computer scientists ar fortunate in having a wide range of job opportu-
nities available. I would encourage anyone who ities avaiable. I would encourage anyone who ects for other countries which help to fuel wars in which Britain has no interest!) to look fo ence projects it is a great joy to be able to talk reely about one's work, and to contemplate its Could W ireless W orld castrophe.
Coulishing one or more detailed articles fict by publishing one or more detailed articles lising
he firms students should avoid when looking or employment? The Campaign Against Arms
Trade (5 Caledonian Road, Kings Cross, LonTrade (5 Caledonian Road, Kings Cross, Lon-
don N1 9DX, tel: $01-278$ 1976) would be only oo happy to supply information to any other iterested reade
David Bailey
David Bailey
OPTO-ELECTRONIC
CONTACT BREAKER
Your article on opto-electronic contact breakers April issue) suggests that they can cat be fireakers to any make of distributor. My own Hillman
Hunter uses a distributor in which vacuum ad ance moves one of the contacts of the contac reaker and, as you can see from the enclosed ges of the maintenance manual, all vacuum were changed as the author suggests.
4.D. Samain
University of Salford

The author replies:
is, of course, correct in saying tha the opto-electronic contact breaker is not suit or sliding contact type distributors. This
 rosion, but must be regarded as a palliative ther than a cure for the well known problem of conventional ignition systems. It is particu-
arry unfortunate that no proprietary devices ar arry unfortunate that no proprietary devices are
availabie to replace such a contact breaker, for On ere reasons which rule out my own device. ot, however, see where it was surgested that any make of distributor was suitable for conver

DIVIDING BY
FRACTIONS
Referring to the article by Gilbert Pearson in method of division from PAL sub-carrier fre quency to line frequency by digital counters, lish this. lish this.
By using the dual pulse synchronizer
sy 71120 ter SN74120 together with a dual Dynchronize flip-flop SN74S74, you can easily "remove" a single
period of the 4.43 MHz signal 25 times per period of the 4.43 MHz signal 25 times pe
second. After counting down by 1.135 you have a frequency of 3906.25 Hz with very low jitter
Using a simple phase locked

MHz master clock or a 31250 Hz double line Lequency is easily produced.
Looking at the signal diagram and the 74120^{\prime} 's uth table, you can see how the circuit works Knut A. Lyster,
Mster Elekronikk
Royken
Norway
With reference to the article "Dividing by fractions" in your April lag1 issue, I would like to nerating a sequence of p pulses, as regularlypaced as possible in q clock periods. The chnique is described in a paper 'The use of igial techniques in television waveform gener or asting Convention and it is the subiect of British Patent No. 1455821
A particular feature of this method is that generates 'residue' function, which represen pulse and its ideal position. This residue can be added with appropriate polarity, amplitude and timing to the control loop of a voltage-controlled
oscillator in such a way as to eliminate the need filter any of the systematic jitter components in the phase-locked loop.
This technique is used in commercial equip-
Tent (such as the HP 8662 S Synthesised Signal nent (such as the HP 8662A Synthesised Signa
Generator described in February 1981 Hewlett Packard Journal) and the associated counting methods are used frequentiy in digitial television rocessing when a line harmonic clock rate
sed to handle signals related to PAL subcar ier, whether or not it is 'mathematically cked.
ohn Chambers
Cadworth
Surrev
ETHICS IN ACTION There is no escaping the moral responsibility placed on all of us to examine our role and
unction in society (June letters). We should se function in society (June e etters). We should see
whether we are contributing directly or indirectly to the design and manufacture of armaments, or other socially unacceptable products
and then reconcile this role with our conscience and then reconcile this role with our conscience,
ethics, religious beliefs, or whatever standards we live by, and then act upon the outcome. All ny life I have refused to work on anything and any price I may have paid has been trifling in comparison to the degree of sympathy and
nexpected quarters. Western civilisation and technology canno and realising that there will becing the facts and realising that there will be consequence fear, very unpleasant ones - but faced they must be, and your courageous editorials will do much to start elect
Robin H. Ma
Barnet
Herrs
PICKABACK SPARKS Regarding Mr A.R. Churchley's remarks April letters, it may be of interest to refer to the paper in the Yournal of the Institution of Electrical Engineers, vol. 93, part IIIa, no. 5, 1946, "The evelopment of triggered spark gaps for high power modulators" by J.D. Craggs, M.E.
Haine and J.M. Meek. This paper describes the evelopment of triggered spark gaps, during the magnetrons for rader applications. magnetrons sor radar applications.
The pulses generated by the discharge of artificial transmission lines were one or two watts power. Repetition frequencies up to watts power. Repetition frequencies up to
$2,500 \mathrm{~Hz}$ were achieved. Early work was on hree electrode spark gaps in air. Later this was ontended to similar gaps sealed in glass vessels of a mixture of argon with a $6-7 \%$ oxygen; the
atter to suppress the latter to suppress the long lived metastable state
in argon which inhibited deionisation The artio in argon which inhibited deionisation. The ratio
of the trigerer pulse energy to that of the main pulse was $10^{3}-10^{4}$ to 1 . The transmission lines were charged from a
d.c. source through a choke. At first this was d.c. source through a choke. At first this was
done at the resonant frequency of the choke and the transmission line capacitance, so that the
line charged to twice the direct voltage. To lie charged to twice the direct voltage. To
achieve a variable frequency system a series
diode allowed the line to charge to twice the achieve a variable frequency systerm a series
diode allowed the line to charge to twice the
direct voltage and then await the occurrence of direct voltage and then await the occurrence of
the trigger pulse. However, it was later found the trigger pulse. However, it was later found
that, without the diode, the frequency could be
be increased to any value above the resonant fre-
ind quency and still give the doubling of voltage.
The charging waveform then tends to a linear
Iise.
It may be interest that patents were applied It may be interest that patents were applied pen air gaps system was reiected by the Patent
Office because of a similar system patented in dice because of a similar system patented M.E. Haine
Much Hadhan

Amcran INDUSTRIAL MUSCLE

\star POWER RESPONSE DC $-45 \mathrm{KHz} \pm 1 \mathrm{~dB}$
OUTPUTPOWER IN EXCESS OF 1.5 KW INTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.) D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2KVA.

HARMONIC DISTORTION LESS THAN 0.05\% DC-20KHz AT 1 kW INTO 6 OHMS.
PLUG-IN MODULES: CONSTANT VOLTAGE/CURRENT, PRECISION OSCILLATORS \& UNIPOLAR AND BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS, AND MANY OTHERS \star OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD.
\star FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD.
TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4 kW .
\star INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS.
ネ 3-YEAR PARTS AND LABOUR WARRANTY
For full details on all Amcron Products write or phone Chris Flack

Analogue Associates

P.O. BOX 3

ATtLEBOROUGH
NORFOLK NR17 2PF
Tel: 0953-452477

Wafer-scale integration

Reducing costs by using i.c. chips on the wafer
by Ivor Catt
Microprocessor Applications Project, Watford College

Much of the cost of manufacturing electronic equipment with integrated circuits lies in making connections to
the chips and interconnecting them. the chips and interconnecting them.
Considerable reduction in this cost is claimed for the method proposed here in which memory chips are used while they are still on the
semiconductor wafer, the whole of which is permanently built into good chips is formed under external control to produce a long seria memory. Any bad chips are automatically by-passed without metallization that interconnects or advance knowledge of the distribution of the bad chips on the wafer.

The traditional method of manufacture of a "silicon chip" microcircuit is as follows.
A wafer of pure silicon material several inches in diameter is sent through a series of furnaces where hot gases are diffused into selected areas of the surface, creating some 500 identical two-dimensional of them perfect and half of them faulty A this stage, a minute fraction, perhaps 1%, of the total manufacturing cost of a complete computer system has been spent. The microcircuits are tested using a wafer probe and marked to distinguish the up into individual microcircuits measuring perhaps one tenth of an inch square, and each good one individually packaged in a ne inch long black box with about ourteen contacts. The black boxes ar boards. Then the boards are tested and assembled into systems which are also tested (see Fig. 1
What is being called "the microelectron ics revolution" is the successful attempt to squeezing more and more circuitry in each microcircuit (or black box) so that a omplete deliverable system can be made with fewer of them. However, more cir ce larger and more likely to be useless as result of its including a faulty spot on the wafer. This leads to lower yield and inreased cost, and the practical limit to the size of a chip is in the region of one or tw plexity of a microcircuit increases, the cost

Fig. 1. Main steps in the construction o lectronic equipment from
r
of testing escalates in geometric propor tion, so that even today's conventional r.a.ms are expensive because of appalling testing problems.
Wrer scale integration is an alternative approach to the above. Although
nominally divided up into "chips", the
wafer is never dissected, and there are built-in interconnections between chips. The full wafer, including faulty chips, installed in the final electronic system. All he costly conventional manufacturing ing, testing, interconnection, testing - are mitted.
The wafer is conventional except that metallization overlaps between chips to ive the inter-chip conections mentiones he wafer distribute voltage supplies and clocks. Crossovers between grids are chieved by two layer metallization. An array of fusible links on the grids localizes the effect of any shorts between voltage for voltage supplies and clock inputs, but only a small number of these pads are connected to the outside.
There are four classes of w.s.i. as shown the chart in Fig.2. Of these, two were One is a possible dream for the future That leaves the fourth, "fault tolerant w.s.i." Now that everyone realizes that the more complex microcircuits already on the market are untestable, it is coming to the vance in microelectronic technology The "fault tolerant" interconnection ap "proach is based on the fact that today"s chip" contains a massive quantity of circuitry - more than 5,000 transistors in a complete general purpose computer in he 1960s. The process of getting rid of bad chips and linking up good chips into erfect machine is delayed unui afr machine, and even after the machine has been switched on for use in the morning Further, the interconnections betwee good chips are "broken" when the machine is switched off, so that every time it is switched back on the machine is re
built from virgin circuitry during the firs five minutes of operation. A very smal proportion (some 5%) of the circuitry in each chip is devoted to this reconstruction process after switch on. The reconstrucontaining logic of conventional desig 100 packages which could of course be integrated into a single microcircuit). This control board is called "chip Z". The rest this article destribes The aim is to build up on the wafer a
spiral of interconnected good chips which
avoids the bad chips. This is achieved by gradual growth process, shown in Fig. 3 , gradual growth process, shown in
where additional chips (for example F) are added to the growing spiral, one by one; the latest chip being tested and discarded if found by chip Z to be faulty. Chip Z com-
municates with it via the good chips ABCDE already in the spiral.
We end up with one or more spirals of perfect tested chips (Fig.4), which for architectural purpos
lie on a straight line.
lie on a straight line.
In the simplest machine, of which the working model has already been built under Russell C. Aubusson at the Middlesex Polytechnic, the wafer accommodates one (or more) shift registers which can usefuily
replace computer disc memory and get rid of the inconvenience of rotating parts. The next machine in the family has the addition of a fast (or control) line to the previoas slow (or 5 . Serial com shown schematically in Fig. 5 . Serial commands travel
rapidly down the spiral along the fast line, checking the address field in each chip they pass and completing a read or write with the appropriate word. The addition of the fast line speeds up memory access from speed approaching that of conventional random access memory. Although somewhat slower than r.a.m. of conventional design it is attractive because of its extremely low cost, between 10 and 100 times tion can achieve, and also because it is selfrepairing. If a fault develops, it is only necessary to switch off the machine and the memory will be repaired on switch-on, the newly failed chip being avoided when
the new spiral is formed. Because of cost the new spiral is formed. Because of cost
reduction and reliability improvement, computers could be' expected to incorporate r.a.ms using w.s.i. as a matter of course when the memory size is 256,000 The rest of this
The rest of this article outlines the opportunities open, to us via w.s.i. once we
break out of the stranglehold of the Von Neumann computer architecture, an archaic design more than a third of a century old which has set the pattern for all com-
puters, microprocessors and microcomputers up to the present time (see editorial, February 1981 issue, p.31).
Over the years the idea has become entrenched that electronic computers are 'information processing' devices, a phrase
which implies sequential processing in the same way as a doctor sees his patients sequentially, forgetting all about one patient when he turns to the next. To develop the analogy further, it has become accepted that the doctor should have no
recollection of what the patient's third finger looked like when he examines the fourth, and so on. Before moving on to examine the fourth finger, the doctor notes fown in the record the state of the third It is remarkable, and in about it. fortunate, that the conventional, schizoid computer is regarded as able to make a reasonable showing at performing quite
complex tasks in spite of its being virtually

Fig. 4. Schematic of a spiral built up on a
completely split down the middle, between memory and processing. However, m book "Computer Worship", lists number of applications in which such machine will not perform satisfactorily.
These are generally applications where it is required to operate on data according to its content rather than merely according to its address location.
Wafer scale,
Wafer scale, fault tolerant hardware leads us to the possibility of a very cheap,
reliable machine of a different kind It clear that more sophisticated operations than "read" and "write" could easily be performed in a processing node. For instance, the data field on the fast line in Fig. 5 could be added to the data field on the slow we could have an "add"" command instead of a "write" command. This is the first step towards operating on more than one
word in the store at the same time - that

Fig. 5. Schematic of a more advanced
system in which a fast, or control, line is system in which a fast, or control, line is
added to the slow, or data, line. This fast line carries commands to the data line and allows more rapid memory access
with the simple memory system.
is, towards distributed processing (a much is, towards distributed processing (a much
misused phrase). A number coming down the fast line can be added to more than one word in memory at the same time.
A major break with tradition should be noted. Whereas a word in memory ha its physical location, words in this kind of memory are addressed by one field within the word. That is, each word carries its address around with it. We actually have a
content addressable mery (memory) masquerading as a r.a.m We can consider moving forward wards even more powerful, more comple machines. Basic principles are sketched in

WIELESSWORID JULY 1981
mand down the fast line, with the result that all words get trapped in tiny loops
rather than continuing in a "follow my leader", barrelling mode. Further, a "mixed mode", or "precess" command can be sent down the fast line, causing words of one class to loop while words no of that class barrel.
any word in memory to have rapid acces any word in memory to have rapid access
to all other words in the memory. For example, in the case of a machine used to monitor aircraft circling above an airport,
one word, containing the co-ordinates of one word, containing the co-ordinates of the records of all other aircraft stacked up waiting to land, so that co-ordinates could be compared and a collision risk by tha aircraft foresesen.
The next step in sophistication comes when we realise that when a barrelling
word passes by a looping word, the situation is similar to a word on the fast line passing a word on the slow line. It is pos sible to cause barrelling words to act as commands and operate on looping data is reduced.
Methods have been worked out whereby segments of the slow line behave as auto-

Fig. 6. The idea of a processing node involving both the slow line (left) and fast
line (right) and allowing more advanced operations than simply "read" and "write",
nomous subroutines, the relevant words
leapfrogging past each other like a line of leapfrogging past each other like a line of
children, and flagging when a computatio nal task is completed. We can get an extremely powerful machine which performs many processes at the same time although the hardware is very cheap and self repair The first project based on the principles described here proved the feasibility of the With E.A. Newman as its technical head ACTP (Advanced Computer Technology Project, a section of the Department of
Industry) financed the project in the Microelectronics Centre at the Middlese Polytechnic, where it was led by Dr R.C Aubusson. ACTP then funded projects to develop a computer architecture. These
were at Brunel University under R.M. Lea, and at Prestwick Circuits Ltd. The Royal Signals and Radar Estab lishment, Malvern, has funded two pro jects on the airborne digital signal proces sing implications of the compute
architecture. This work, at Prestwick Circuits Ltd, is led by Ken Wood. Burroughs Corporation, Cumbernauld and San Diego, is now investing in the development of both the microelectronics
and of the computer architecture This and of the computer architecture. This
work is led by Dr Malcolm Wilkinson Wafers designed at Cumbernauld processed in San Diego and then tested in Cumbernauld have successfully generated spirals of more than 200 chips on an imperfect wafer. This lays to tobout the overall feasibility of the invention.

References

Aubusson, R. C. and Catt, I. "Wafer-scale integration - a fault-tolerant procedure",
IEEE fournal Solid-State Circuits, vol. SC 13, no. 3 , June 1978.
Catt, I. German Patent Application no. P 23
30089.8 -53. US Patent no. 3913072. British
 1525048 .
Sutherland, I. E. and Mead, C. A. "Microelectronics and computer science", Scientific
American, September 1977, pp. 210-228. . Manning, F. . B. "At approach to highly integrated, computer-maintained cellular ar-
rays",
IEEE
Trans. rays,
$536-552$, June 1977. . Catt, I. "Computer Worship," Pitman, Lon-
don 1974.
"follow-my-leader" or barrelling mode;
(middle) (middle) mode in which words are trapped
in tiny loops: (right) mixed mode in which - in tiny loops; (right) mixed mode in
some words loop and others barrell.

Digital storage and analysis of speech

continued from page 48
Reconstructing the analogue waveform
Having digitized and stored a signal, it needs to be passed through a d-toconverter (digital-to-analogue) and low-
pass filter when replayed. D-to-a convertpass filter when replayed. D-to-a convert
ers are cheaper than a-to-d ones and ers are cheaper than a-to-d ones, and the
characteristics of the low-pass filter for output can be the same as those for input. However, the desampling operation intro duces an additional distortion, which has an effect on the component at frequency of

$\frac{\sin \left(\pi f / f_{s}\right)}{\pi f / f_{s}}$,

where f_{s} is the sampling frequency. An "aperture correction" filter is needed to compensate for this, although many systems simply do without it. Such a filter
is sometimes incorporated into the code chip.

For telephone-quality speech, existing codec chips, coupled if necessary with in tegrated pre-sampling filters, can be used, at a remarkably low cost. For higher-quality speech storage the analogue interface
can become quite complex. Comprehensive studies of the problems as they relate to digitization of audio, which demand much greater fidelity than speech, have identified the following sources of error: - slew-rate distortion in the pre-sampling
filter for signals at the upper end of the audio band;
\bullet insufficient filtering of high-frequency input signals;

- noise generated by the sample-and-hold amplifier or pre-sampling filter;
- acquisition errors because of the finit
cuit;
\bullet insufficient settling time in the a-to-d conversion;
- errors in the quantization levels of the a-
to-d and d-to-a converters;
- noise in the converters;
- jitter on the clock used for timing inpu or output samples;
- aperture distortion in - ampler;
- noise in the output filter as a result - limited dynamic range of the integrated circuits;
- power-supply noise injection or ground coupling;
- changes in characteristics as a result of temperature or ageing:
Care must be taken with the analogue interface to ensure that the precision implied by the resolution of the a-to-d and d-to-a converters is not compromised by inade-
quate analogue circuitry. It is especially quate analogue circuitry. It especially
important to eliminate high-frequency noise caused by fast edges on nearby comnoise caused
puter buses.

[^1]

[^2]

lt of d und lit or dol To be continued

Pin

 , 1

[^3]又 1 ,

Sound synthesis using Walsh functions

Simple introduction to the synthesis of complex vibration modes by Alan A. Thomas

An experimental approach to additive synthesis employing digital echniques is described. The system enables an infinite number of waveshapes to be generated by a basic fixed Walsh function generator attenuators. By mathematical analysis of known waveshapes the system may be used as a source of sound for music synthesis, provided and filter are added to the basic ystem. Using additional hardwa time-dependent spectrum changes are possible.
A sound may be represented by a series of inusoidal components of particular fresinusoidal components of particular fre-
quency, amplitude and phase. The lowest frequency component is referred to as the fundamental, first mode, or first partial. Remaining components are then related to this fundamental frequency by simple
ratios. Such a relationship is termed harratios. Such a relationship is termed har-
monic. Not all musical sounds are entirely composed of harmonically related partials; non-harmonic components, that is partials which do not bear simple direct integral present. This is the reason that simple harmonic analysis may result in a synthesized sound which lacks some of the character of the original, even though care is aken to mimic all other basic properties. In harmonic analysis, each partial is
given the corresponding value of N in the harmonic series; the fundamental is the first harmonic. For a sound composed of requencies in the ratios $1: 3: 5$ for example, the second and fourth harmonics he frequencies three and five may be referred to as the non-zero coefficients in the harmonic series of the sound under analysis.
Consider now a further sound composed of frequencies in the ratios 6: 12: I 1 . Can
this series be termed harmonic? It is always possible to find a fundamental frequency of which a given series are harmonics; in this example the ratios are all
multiples of three and can therefore be regarded as the second, fourth and fifth regarded as the second, fourth and fifth
harmonics. respectively of a fundamental frequency, three. In this case both the fundamental and third harmonic are said to have zero coefficients. The fundamental of a harmonic series need not necessarily be
present; if the fundamental is present it
shouid be considered as a non-zero coefficient in the normal manner. An interesting 15 Hz were combined, the resulting complex function would repeat exactly three times per second although the fundamental has zero amplitude. In general
therefore, any collection of frequencies can be arranged to fit into a harmonic series, although the fundamental may not be pre-A second important point which must now be made is that there is only one characteristic phase and amplitude for desired waveshape being realised. How therefore can a harmonic series be set down such that both phase and amplitude formation is given for all non-zero coeffican be represented as the sum of a sine and cosine wave both of zero phase with ampliudes given by the phase relationship of the original. It follows that a complex
periodic function may be represented by a series of sine and cosine functions whose amplitude and period are dependant variables. All that remains is to derive some method whereby the recated. This is Fount amplituades and was first formalized from the basic ideas of other workers by Fourier in 1822 during his work on heat flow. The series of terms derived by Fourier analysis for a particular function is terms the Fourier
series and indicates the magnitude of the sinusoidal components. In short, a complex periodic function such as a musical sound may be represented by a series of sine and cosine functions. But first it is necessary to perform harmonic analysis of
the waveform to locate the non-zero coefficient sinusoidal components and then apply the Fourier analysis to determine the amplitude of the individual sine and cosine terms.
Fourier sound synthesis
By using a bank of quadrature oscillators -the frequency of which is set by harmonic analysis and amplitude set by the Fourier series of the waveform to be synthesized - a reasonably accurate synthetic sound corresponding to the
mode of vibration may be produced. To maintain the same characteristic sound when fundamental frequency is changed the frequency of the generated harmonics must be altered proportionately. In
death knell of Fourier synthesis in commercial electronic instruments. For accurate synthesis, a large number of oscillators
are required and the task for the electronic engineer, while not impossible, is complex since it is necessary to arrange that all each other accurately in frequency while maintaining constant amplitudes.
Clearly some method is desirable whereby the attributes of Fourier analysis as applied to sound synthesis may be main-
tained but the method of waveform generation altered to remove the inherent practical limitations. The method discussed removes these limitations by transformation of the sine and cosine functions associated with the Fourier series to the
rectangular functions of the Walsh closed rectangular function
The transformation from Fourier series to Walsh/Fourier series for a given function is purely mathematical, and has been detailed by K. Simens and R. Kitai, see transforming to the Walsh/Fourier series as far as sound synthesis is concerned is that the bank of quadrature oscillators employed in direct Fourier synthesis is reling an appropriate digital function generator. Thus by using a single voltagecontrolled oscillator the facility to play tunes is realised and the analogous Walsh harmonics, derived within the function generator, automatically track the master
oscillator maintaining the characteristic sound of the synthesized mode of vibration, independent of pitch.
Properties of Walsh functions Walsh functions were first investigated by J. L. Walsh in 1923 and are of purely
mathematical origin ${ }^{2}$. Collectively, they form a closed set of orthonormal functions. The functions are defined on a basic interval, in this case time. The sequence may then be repeated to form a set of periodic
functions. During each interval the functions may only take on the values of ± 1 and are thus rectangular in form. If the basic interval is subdivided into 2^{n} equal segments where n is an interger, then the
corresponding number of Walsh functions which may be incorporated within the basic interval is $2^{n}-1$. . The recursion relationship governing
the form of individual functions has been the form of individual functions has been
translated to the appropriate digital form translated to the appropriate digital form
by H. F. Harmuth ${ }^{3}$. Harmuth has shown

WRELESS WORLD JULY 198
hat once Walsh functions have bee converted to zero and one logic levels; the recursion relationship reduces to modulo tion.
Certain Walsh functions are analogous to a further set of mathematical functions acher func-
in simple
recursion geometrical progression, the recursio elationship for Rademacher functions, and hence the analogous Walsh functions, appropriate digital form reduces to mod ulo-two counting, the logical binary function. It follows that a digital representation of the complete Walsh orthonormal set for a given value of n may be produced by a
logic system comprising of exclusive-or gates and binary counters driven from a master oscillator.
Before producing a suitable function generator it is necessary to decide on by Fourier analysis is performed to obtain the appropriate Fourier series for a given function, the resulting series tends toward infinity; that is, the number of sine and cosine functions should ideally be infinit for perfect harmonic representation.
It is no surprise that when the pa mathematical analysis is performed to obtain the Walsh/Fourier series the numbe of Walsh functions required for perfect representation also tends toward infinity chosen for n, the more accurate the final waveform synthesis. In practice n must be limited to a value which is a compromise between acceptable accuracy of synthesis and the amount of hardware involved in limiting n to a finite value will be considered in more detail later.

Basic Walsh
function generator
Given $n=5$ a generator will produce $2^{5}-1$ Walsh functions and the number of Rademacher functions will be equal to n, that is five Rademacher functions. This is achieved by a simple five-bit synchronous binary down counter driven by the master oscillator. The analogous Walsh functions thus produced are wal31, wal15, wal7, the binary counter. The remaining WValsh functions are formed by performing mod-ulo-two addition of the functions so far derived in the appropriate order. Wal2 for x wall and wal3. The three functions ly of wal1 and wal3. The three functions ly-
ing between wal7 and wal3 are formed as follows: wal6 is formed by modulo-two addition of wal7 and wal1; wal5 is formed by modulo-two addition of wal7 and wal2 and wal4 is formed by modulo-two addition of wal7 and wal3. The sequence is
straightforward from the examples given. The table lists the complete arrangement fo all 31 Walsh functions when $n=5$. The system may be extended for higher orders of n if desired by simply increasing the
eneration of first 32 Walsh functions (wal0 excluded) using binary

Function	$\text { Modulo - } 2$ Division	Modulo -2 Addition	Function	Modulo - 2 Division	Modulo - 2 Addition
wal31	Oscillator		wal15	wal31	
wal30		wal31, wal1	wal14		wal15, wal1
wal29		wal31, wal2	wal13		wal15, wal2
wal28		wal31, wal3	wal12	,	wal15, wal3
wal27		wal31, wal4	wal11		wal15, wal4
wal26		wal31, wal5	wal10		wal15, wal5
wal25		wal31, wal6	wal9		wal15, wal6
wal24		wal31, wal7	wal8		wal15, wal7
wal23		wal31, wal8	wal7	wal15	
wal22		wal31, wal9	wal6		wal7, wal1
wal21		wal31, wal10	wal5		wal7, wal2
wal20		wal31, wal11	wal4		wal7, wal3
wal19		wal31, wal12	wal3	wal7	
wal18		wal31, wal13	wal2 wal1		wal3, wal1
wal16		wal31, wal14		wal3	

or gates and using the same basic sequency
Synthesis of functions using Walsh harmonic bank To synthesize a function it is necessary to e Walsh/Fourier series. The noncoefficient functions of the series which lie within the range of the generato re then selected and mixed ions indicated by the series.
For example, the non-zero coefficient functions in the range 0 to 31 for th riangular wave given by the Walsh Fourier series are wal2, wal6, wall4 and wal30. Their relative amplitudes are +0.5 Thus, by selecting these four function from the Walsh harmonic bank and sum ming them in the relevant proportions, riangular wave is synthesized
The frequency of the waveform depend functions which is in turn determined b he frequency of the master oscillator. If he waveform is to have a frequency f, the he master oscillator frequency must be 2 where n is as previously defined. Perfect harmonic synthesis is only pos-
sible when an infinite number of Walsh functions are employed. When a finit number is used the synthesized waveform appears in a sampled form, the sample rat wave having 2^{n} discrete levels within each period. To remove this appearance, it is necessary to integrate the function; in practice this can usually be achieved by simple low-pass filtering. Fig. 1 shows th appearance of the triangular wave just
discussed before low-pass filtering Naturally the number of samples and

Fig. 1. Triangular wave is synthesized by
selecting four functions, wal2, wal6, wal1 nd wal30, and summing in relevant and wal30, and
proportions
herefore the accuracy of the waveform can be increased by employing a higher orde of n but at the expense of more hardware. Summing of the various Walsh func ions may be performed by a standar nent, the proportions of mix being scaled o best suit the practical device.
If the master oscillator is made voltageontrolled the frequency of synthesized waveform may be adjusted in the trad
ional manner. If large variations of fre uency are required, the low-pass filter must also be voltage-controlled.
Digitally programmable attenuators
feach of the Walsh functions are fed to puts of which are then mixed an entirely flexible system is produced which can produce virtually any desired waveshap his, coupled with a voltage-controlle master oscillator and filter, enables a musi
cal device with infinite tonal qualities to cal device with infinite tonal qualities to b realised. Further, by altering the program
of the attenuators during the life of the wave, the spectrum may be made time dependent, enabling wave shapes such hat of the piano to be synthesized.
An experimental system is shown in Fi ontrolled oscillator generates a rectanguar waveform at a frequency 2^{n} time higher than the frequency desired for the nethesized waveform. A Walsh functio eclusive-or gates then generates, under control of the v.c.o., $2^{n}-1$ Walsh func ions. Each Walsh function is then fed to igitally programmable attenuato (d.p.a.); only one path is shown in Fig. 2 .
The d.p.a. is controlled by a read-only nemory (r.o.m.) which stores up to eight-bit digital words. This enables up to 56 levels of attenuation to be pro grammed, any 32 of which may then be seiected by addressing the appropriate
digital word. The order in which the digial words are selected is controlled by sequencer which comprises of JK flip flops and logic gates; the sequencer may
also be made programmable if desired also be made programmable if desired
feeds the Walsh function generator also feeds a divide-by- n counter. In this manthe particular Walsh function is varied is controllable. Once again, the counter cycle is made programmable.
The output of each d.p.a. is then
summed in a traditional virtual earth summing amplifier, the output of which is fed to a voltage-controlled filter (v.c.f.).) this being controlled by the same control voltage which controls the v.c.o. Thus, the
v.c.o. and v.c.f. track together. The total system results in a waveform being synthesized in which the spectrum may be altered in a programmable manner, both in terms of type and rate of spectrum change. In practice the sequence is initiated by the
keyboard controller.

Polyphonic waveform

 synthesisBy the application of appropriate Walsh/ Fourier series both triangular and saw-
tooth waveforms may be synthesized in a manner compatible with existing organ divider techniques. The principle by which polyphonic
operation is achieved in electronic organs operation is achieved in electronic organs
is well known. Briefly, pitches ratioed in is well known. Briefly, pitches ratioed in
accordance with the scale of equal temperament are generated for the highest octave; either 12 independent oscillators
are employed or a single master oscillator are employed or a single master oscillator
working in conjunction with a digital funcworking in conjunction wion
tion generator. Lower octaves of each scale tion generator. Lower octaves of each scale
member may then be generated by the use
of binary dividers, as tones spaced at ocave intervals have a $2: 1$ frequency ratio. may be generated polyphonically, while the number of oscillators required need not exceed 12. Being of digital form the waveshape is directly available at the divider outputs, namely a squarewave. For reasonable additive sound synthesis a minimum of also be simultaneously available: triangular and sawtooth waves.

If the organ dividers are arranged to be of the form shown in Fig. 3, the signals present at the various outputs become not of useful Walsh function also take the form ployed in direct Walsh/Fourier synthesis, ployed in direct Walsh/Fourier synthesis, taneous generation of square, triangular and sawtooth waveforms to be constructed.
Referring to Fig. 3, given that the index $n=5$, five Walsh functions are directly
available from the divider chain wal31,

Fig. 2. If each of the Walsh functions are fed to a digitally programmable attenuator and the outputs mixed virtually any waveshape can be produced.

Fig. 3. Binary divider chain providing wal31, wal15, wal7, wal3 and wal1 at consecutive outputs.

Fig. 4. By adding inverters and four excusive- or gates triangle and sawtooth waveforms can be synthesized
wal15, wal7, wal3 and wall at consecutive
outputs of the divider The Walsh/Fourier outputs of the divider. The Walsh/Fourier series of a sawtooth waveform, limited to 5 is as follows
-1 wal1, -0.5 wal3, -0.25 wal 7
The negative signs in the series are inThe negative signs in the series are in
terpreted as function inversion for practical purposes. All the necessary functions for sawtooth waveform synthesis are directly available from the divider outputs, provided account
of a triangular waveform
$+0.5 \mathrm{wal}^{2}+0.25 \mathrm{wal6},+0.125 \mathrm{wall}$ +0.0625 wal30.
None of these four functions are directly None of these four functions are directly
available at the divider outputs. But the available at the divider outputs. But the
table shows that these four functions may be derived by the use of only four exclu-sive-or gates. The complete arrangement
for deriving all the necessary function for for deriving all the necessary function for
synthesis of both triangular and sawtooth waveforms is detailed in Fig. 4.
To sum these functions accurately in the relevant proportions they are rewritten in more familiar binary-weighted form:
$+2^{4}$ wal2, $+2^{3}$ wal6, $+2^{2}$ wall 4,
$+2^{1}$ wal30.
and for the sawtooth wave:
-2^{4} wall, -2^{3} wal3, -2^{2} wal7,
-2^{1} wall $5,-2^{0}$ wal31.

By applying the functions to the appropriate inputs of two d-to-a converters, acrealised. Although of higher cost, d -to-a converters have two distinct advantages over operational amplifier summators. Firstly, as the output of a converter is in binary-weighted proportion to a single re-
ference voltage or current, the accuracy of summation becomes independent of any variations in the logical 1 or 0 levels pre sent at the outputs of the dividers or exclu-sive-or gates. Secondly, high accuracy summation resitors
ricated ricated.
Fig. 5 veloped for evaluation of the system using readily available integrated circuits. For economy, the facility for simultaneous waveform generation has been dropped
during evaluation; only a single d-to-a converter is employed together with some additional data selection logic.

Digital-to-analogue

conversion

The d-to-a converter is the six-bi Motorola MC1406L, whose digital inputs
are compatible but inverting which must be taken into account when selecting appropriate outputs from the dividers. The device requires an external reference for its operation and, as the output is in the form of a current ratio, current-to-voltage
conversion is also necessary in this particular application. The reference for the lar application. The reefence for the
MC 1406 L device, IC_{8}, consists of the tem-
peraure of 7.5 A current of 7.5 mA supplied through R_{1}, with C_{1} providing a.c. decoupling. Because the negative reference input (pin 13)
of IC_{8} is the high impedance node of th internal reference amplifier, buffering is not necessary. The device requires its re mined by resistors to pin 12 and the refer ence voltage. With the potentiometer set to mid-position, the values are selected to produce a reference current of -2 mA The value of R_{3} is selected so that both reference input points have the sam
source impedance, to reduce reference cur rent error and temperature drift. The in ternal reference amplifier also requires compensation to maintain stability; with the values selected for the input resis
tances, the compensation tasces have a minimum value of 180 pF to maintain an acceptable phase margin. The output of $\mathrm{IC}_{8}($ pin 4$)$ provides a current which is a linear product of a sixbit digital word and an analogue reference voltage. The output current is negative and is defined from the equation
$-I_{\mathrm{o}}=I_{\text {ref }}\left(\frac{A_{1}}{2}+\frac{A_{2}}{2^{2}}+\frac{A_{3}}{2^{3}}+\frac{A_{4}}{2^{4}}+\frac{A_{5}}{2^{5}}+\frac{A_{6}}{2^{6}}\right)$
where $I_{\text {ref }}$ is the reference current and A_{1}
through to A_{6} are the digital inputs, m . through to A_{6} are the digital inputs, m.s.b.
through l.s.b. respectively, $A_{\mathrm{n}}=0$ if the input is at logical 1 , and $A_{\mathrm{n}}=1$ if the input is at logical 0 . As the voltage at the

Fig. 5. Practical circuit for system evaluation omits simultaneous waveform generation for economy
output must not rise above $\pm 0.4 \mathrm{~V}$ for ac curate conversion, simple resistive cur-
rent-to-voltage conversion is not practica rend an op-amp converter IC, is used. The virtual-earth effect of the amplifier maintains the voltage at pin 4 of IC_{8} within the permitted value, while the output voltage $\left(-I_{0} R_{0}\right)$ may be set to any reasonable
value by the suitable selection of R_{0} With R_{0} set at $2.7 \mathrm{k} \Omega$, the output voltage may be set to a peak value of +5 V by adjustmen of the reference current control. Capacito C_{o} provides low-pass filtering of the outpu 741 general-purpose device.
Digital function generation and selection logic
Although the MC1406L device is a six-bit
d-to-a converter, only five-bit conversion d-to-a converter, only five-bit conversion
is required in this application. To maintain is required in this application. To maintain
maximum accuracy during conversion, the input corresponding to the least-signifi-cant-bit is dropped and disabled by connecting to +5 V through R_{7}. The re maining most-significant-bits are supplied most-significant-bits are supplied with an SN74157N, quadruple 2 -to-1-line data selector, IC_{7}. Hence either of two functions may be presented to each of these inputs as required. The least-significant required during triangular waveform synthesis if the desired sample-rate is defined on the time axis. This bit is therefore supplied through a simpler nand-gate ar rangement, IC_{1}
he data selectors and nand-gate are cuit, the B-inputs of th. With it open-cir cill, the B-inputs of the data selectors are allowed to their res
sion points, namely:
wall to A_{1}, wal3 to A_{2}, wal7 to A_{3}, and wall 5 to A_{4}
In the case of the least-significant fifth-bit, the nand-gate is allowed and the function -wal31 is inverted and transferred to the respective d-to-a conversion point A_{5},
After taking into account the inversion provided by the d-to-a inputs, all the functions necessary for sawtooth waveform synthesis are presented, namely -wall -wal7, -wal15, and -wal31. With the switch closed, as shown in Fig. 5, the A
inputs of the data selectors are allowed to their respective d-to-a conversion points, namely:
-wal2 to A_{1}, - wal6 to A_{2}, wall4 to A_{3}, and -wal30 to A_{4}.
In the case of the least-significant fifth-bit, the nand-gate is now disabled and a logical 1 is applied to disable the respective d-to-a conversion point A_{5}. Hence, after taking
into account the inversion into account the inversion provided by the d-to-a inputs, all the functions necessary
for traingular waveform synthesis are presented, namely wal2, wal6, wal14, and wal30. Dropping the least-significant fifth bit during triangular waveform synthesis must result in this wave having a lower
peak amplitude than that of the sawtooth wave. The amplitude variation is only around 3%, and is sufficient to warrant the

reless world july 198

Fig. 6. Clock generator frequency is set to 2^{5} f for testing dynamic operation of Fig. 5

otherwise necessary switching of the cur

 rent reference.${ }^{\text {TC }}$ The divider, comprising $\mathrm{IC}_{3}, \mathrm{IC}_{4}$ and master/slave flip-flops controlled appro priately at their JK inputs via and-gates IC_{2}. Collectively they constitute a five-bit synchronous ripple-through gated binary down-counter which generates the contro
of a clock-generator, five basic Walsh functions. Four true functions are supplied to the appropriate B-inputs of the data selectors, while a fifth and inverse function is supplied to the nand-gate a
required. Four true functions are also fed required. Four to the exclusive-or gating where, in conjunction with a common function -wall the necessary four additional inverse functions are generated. These four invers functions are then supplied to the appro

Setting-up procedure

Setting up the generator is straightforward and only requires the adjustment of the reference potentiometer. The procedure is

- set switch to open position as in saw-
tooth waveform synthesis
- monitor positive d.c. output of the
generator
adjust potentiometer to set d.c. out-
put to +5 V
remove temporary link.
The generator may now be tested for correct dynamic operation using a suitable clock generator, Fig. 6. For an outpu quency is set to $2^{5} f_{0}$. Using the values suggested in Fig. 6, the output frequency is approximately 440 Hz . Maximum operating frequency of the divider is
around 5 MHz , while the maximum around 5 MHz , while the maximum sion section is predominantly limited by the slew-rate of the operational amplifie current-to-voltage converter. The value o C_{o} depends on the output frequency f_{o}. It is suggested that initially the -3 dB poin
of the operational amplifier is set to $2^{5} f_{0}$. Thus $C_{0}=1 / 2 \pi 2^{5} f_{0} R_{0}$. This gives a value of
4.7 nF .

Practical extension for full polyphonics
By applying appropriate Walsh functions to separate summators any number of different waveshapes may be synthesized simultaneously at a given frequency. But
for full polyphonics, simultaneous multifor full polyphonics, simultaneous multi-
frequency generation of these waveshapes must also be arranged. As an aid to locating functions which form a useful geometrical progression in sequency, an analogy with sine and cosine notation is again use-
ful. Designating the odd and even indexed ful. Designating the odd and even indexed tains

$$
\operatorname{sal}\left(a^{\prime}\right)=\operatorname{sal}(2 a+1)
$$

where the sal function of index a^{\prime} has twice the sequency of the sal function of index a the se
and

$$
\operatorname{cal}\left(b^{\prime}\right)=\operatorname{cal}(2 b)
$$

where the cal function of index b^{\prime} has twice the sequency of the cal function of index b,
From this it may be deduced that the functions at consecutive outputs of the divide are octavely related and form a geometrical progression in sequency. For multi-octave generation of the functions -wal31, -wal15, -wal7, -wal3, and -wal therefore, it is only necessary to select th
correct extended-divider outputs. -wall for synthesis purposes at pitch $\mathrm{A}_{2}(880 \mathrm{~Hz})$ for example, is the identical function - wal3, for synthesis purposes at pitch $\mathrm{A}_{1}(440 \mathrm{~Hz})$, and so forth.
To extend the generator scheme for
multi-octave generation of the function multi-octave generation of the functions
wal30, wal14, wal6, and wal2 however requires separate groups of exclusive-o gates. For correct sequency, wal2 at pitch $\mathrm{A}_{2}(880 \mathrm{~Hz})$ for example should be formed
by modulo-two addition of the functions by modulo-two addition of the function
wall and wal3 at pitch A_{2}, giving frequen cies of 880 Hz and 1760 Hz for wall and wal3 respectively.
Thus extension of the basic generator scheme to full polyphonic capability, while
viable, requires a formidable amount of hardware in m.s.i. form. With a view to continued on page 82

Which way h.f. broadcast receivers?

Proposals for the development of s.w. sets
by Y.-C. Heng and R. C. V. Macario, University College of Swansea

With a vast number of shortwave receiver sets around the world, estimated as being over 100 million sets in regular use, and with a majority of listeners with little or no technical knowledge, using their sets in a wide variety of environments, it is worth taking a look at methods for
improving the design of h.f. sets. The improving the design of h.f. sets. The the incorporation of microprocessors are discussed.
According to conservative estimation, According to conservative estimation,
there exist in the world today between 200 and 300 million radio sets capable of shortwave broadcast reception. A regular audience approaching 100 million is also
estimated. The figure must surely encourage shortwave broadcasters, but also indicates how important is the function of shortwave broadcasting. It is also estimated that there are one million amateur radio enthusiasts (class A) around the
world, but as this is only 1% of the suggested audience clearly the majority of shortwave broadcast listeners have relatively little technical interest or perhaps background and accept comparatively inexpensive receivers. In addition, listen-
ers operate their sets either in an environment with a high level of man-made noise or have a very inefficient aerial. On the other hand, they are usually hampered by difficult tuning operation, undefined sig nal reception, and poor receiver stabiity,
yet form the majority of shortwave boradcast listeners. This article therefore sets out to discuss which way a shortwave broadcast receiver designer might go with regard to alternative design approaches and the discussion is supported by practiplying microprocessors in popular shortwave broadcast receiver designs must also be considered and views on this ap-
proach are also included. proach are also included

What is required?
In this section, difficulties of both manufacturers and users of shortwave broadcast receivers are mentioned, but firstly re quirements of users and recommendations of broadcast unions are also set down. In order to bring out the difficulties
facing the shortwave service, it is reasonable to know the distribution of shortwave broadcast frequencies in the radio spec trum. It seems that the arrangement of radio spectrum has never been able to

TABLE 1. Current proposals of h.f. broadcasting service			
PRESENT	PROPOSAL	PROPOSAL	PROPOSAL
FREQUENCY	FROM	FROM	FROM
allocation	E.B.U. (1)	U.K. (2)	A.B.U. ${ }^{\text {(1) }}$
		2300 to 2495	3900 to 3950 (2)
3900 to 3950 (2)	3900 to 4060	3200 to 3400	3950 to 4000 (2)
3950 to 4000 (2)	4750 to $4995{ }_{\text {(2) }}$	3900 to 4000	4750 to 4995 (2)
4750 to 4995 (2)	5005 to 5060 (2)	4750 to 5060 (except 4995 to 5005)	5005 to 5060 (2)
5005 to 5060 (2)	5740 to 6200	5830 to 6200	5950 to 6200
5950 to 6200	7100 to 7500	7100 to 7500	7100 to 7300
7100 to 7300 (2)	9400 to 9900	9400 to 9800	9500 to 9775
9500 to 9775	11500 to 12025	11600 to 12000	11700 to 11975
11700 to 11975	13600 to 14000	13360 to 13560	13600 to 14000
15100 to 15450	15100 to 15700	15100 to 15600	15100 to 15450
17700 to 17900	17500 to 17900	17500 to 17900	17700 to 17900
21450 to 21750	21450 to 21850	21450 to 21850	21450 to 21750
25600 to 26100	25600 to 26100	25600 to 26100	25600 to 26100

(1) E.B.U.: European Broadcast Union
U.K.:. United Kingdom
A.B.U.: Asian-Pacific Broadcast Union
${ }^{\text {(2) }}$ Shared with other services
Frequency in kHz
shortwave trom the Asian Broadcasting Union (ABU), the European Broadcasting nion (EBU) and the United Kingdom before the 1979 World Administration Radio Conference (WARC) are listed onc
Table 1. At WARC 1979, the frequency Table 1. At WARC 1979, the frequency
allocations in Table 2 were agreed and allocations in Table 2 were agreed and
these will be available for allocation from January 1982. Table 2 also lists the pre sent band planning. A glance at Table 2, and Table 1 for that matter, shows that the broadcast bands are scattered between 3 and 27 MHz , with no simple arithmetic

Design difficulties
Despite the general difficulties faced by radio receiver designers, there are som distinct problems for a popular low-cos shortwave receiver design.
In 1959, there were only a few transmit ters with transmitting powers of ove number has increased to about 400 . The generate tens, in some cases hundreds, of millivolts at the antenna terminals whe received. The trouble caused in the re ceiver is that strong signals generate a strong enough to give the appearance of liveliness, yet masking weak wanted sig nals. How to distinguish the wanted weak signal from massive strong unwanted si
nals is always a maior technical task.

(1) Frequencies are in MHz
(2) $S h a r e d ~ w i t h ~ o t h e r ~ s e r v i c e s ~$
totally satisfy any shareholder of the spectrum. "How to best share the radio spectrum for each different service? will alexercise. Shortwave broadcasting in particular is briefly considered here
In the past twenty years, the total in-band and out-of-band) has grown up in-band and out-of-band) has grown up
from 11,000 to 27,000 daily frequency hours ${ }^{1}$, and the problem of congestion is well understood. Re-allocation and expan well understood. Re-allocation and expan-
sion suggestions of the boradcast bands on
解

Fig. 1. First approach for a functional system

A free-running local oscillator in a
superhet receiver is always troublesome, especially when the first intermediate frequency is set to a high frequency to imrove image rejection ratio. mechanical tuning dial design, a resolution of 10 Hz at 30 MHz can really never be achieved. One can therefore imagine the outcome of the accuracy of a normal Good shaping of the selectivity curve he r.f. and i.f. stages offer a direct way of rejecting unwanted signals, but cost is a factor when seeking good selectivity
Due to skywave transmission, a fading phenomenon is inherent with shortwave
broadcast reception; a way to conquer this problem should always be considered.

User's difficulties and

 requirementsNo need to say, as often as pot the designer's difficulties mentioned above are overcome in a popular-model shortwave broadcast receiver design by being trans-
ferred to user operation and reception difficulties.
Difficulties to tune to a desired station, nd maintain that listening station from drifting, unavoidable interference and spurious signals due to poor linearity and
selectivity, audio output variations due to fading effects, are some of the major difficulties facing users. What do the users want? The users simply want easy opera-
ion, good performance and low cost re-
ceivers, requirements of course, in almost After a joint meeting between represen atives of national receiver and transmitter tatives of national receiver and transmitter
manufacturers associations and an EBU manufy grour concerned with h.f. broadcasting ${ }^{2}$ a brief and pertinent description was suggested for a popular shortwave broadcast receiver design: it should be reasonably-priced, stable with product demodulator and easy-tuned.
Following this suggestion, the design
philosophy is divided into four easy operation, high stability, low cost and good performance.
One way and better way to relieve the difficult task of mechanical tuning is to tuning can make it possible to tune quickly and accurately over a large number of shortwave broadcast stations. Incorporation by means of frequency synthesizer circuits is discussed below.
keying in frequency information, waveength information, or a pre-assigned code. Before the idea of programme-labelling ${ }^{3,4,5}$ can be widely implemented, listeners still need to look up from a handbook or simply
memorize the identity information of a station. It is tiresome to find out station dentity information from a handbook each time, but it is also impractical to memorize such things as 5.339 MHz or 56.19 meters of more than a few stations. Therefore a
station assignment plan similar to the m.f. could be considered ${ }^{10,11}$. For instance, one plan is to divide the whole shortwave broadcast spectrum into several "fre-
quency bands". Then in each band, stations with agreed channel spacing. are given unique channel numbers. For example, the above-mentioned station could now have a pre-assigned code such as Band 3, Channel 79. With a station
identity information simpler than a telephone number and using a keyboard entry technique, the user could tune to a favourite programme station easily and accurately
After
After tuning to a given frequency, an stay tuned to that frequency without readjustment over an extended period. By ap plying the frequency synthesis technique, the ideal condition can be approached. A frequency synthesiser can generate a
very large number of local oscillator frequencies by programming and have the stability and accuracy equal to that of a single master crystal oscillator. Today, crystal ocsillator stability of 1 part in 10^{6} is
easily achieved in a non-ovened but roomeasily achieved in a non-ovened but roomwithin $\pm 5 \mathrm{~Hz}$ when tuned to 10 MHz . Many interesting synthesiser devices are now appearing on the open market, no necessarily originally developed for
shortwave receivers, but which shortwave receivers, but which can be
readily adapted for such purposes. In this article the Philips LN 123 and Plessey NJ 8811 synthesisers are used in two different design approaches.
To keep receiver cost down is almost mandatory. In general, manufacturing cost
can be subdivided into material cost, testing cost and assembly cost. By using cheaper components, such as integrated

ircuits, ceramic filters, etc., not only the material cost, but also the testing and assembly costs can be reduced. A suggested requency allocation proposal which can reduce the price of the receiver system Gor performane and low cost easy to reach at the same time by a designer, sometimes the two requirements are in direct conflict, but this does not mean a low cost receiver need not have is how to distribute the expense over the design. Nevertheless, some specifications which should be considered as a "must be
ood" are listed here:
(1) Linearity
(2) Sensitivity
(4) Image rejection ratio
(5) Frequency stability

H.f. Receiver Design

Approaches

Having just specified the design requirements, we now describe two designs which achieve the requirements, but which are based on quite different approaches.
Fig. 1 shows a system block diagram. In his first system design approach, fre-
quency allocation is based on the WARC 1979 new agreement, listed in Table 2. The whole frequency spectrum is arranged o have 12 frequency bands and a channel pacing of 5 kHz is assumed. Under this
scheme, a broadcast station with a transmitting frequency at 9.645 MHz would now have an identity code: Band 6;

Channel 30. To tune to this station, the operator presses the key ' B ' first, opening he same to the band memory unit and at the same time closing the gate to channel memory unit. The number ind is then pressed and the memory display unit then
shows this band number. The user then presses key ' C ' reversing the above gate switch functions and then the number ' 30 '. The channel display unit should then show this channel number. The actual digits stored in the band and channel memory numbers are then used as address codes to fetch the correspondent set of words from the eprom to progam the programmable divider. The vco (voltage-controlled oscillator) output, via a buffer and pres-
caler stages, is divided down in the programmable divider and then sent to the phase comparator unit to compare with the reference frequency signal. If a different of requency or phase exists, an error voltage is generated through the loop filter to corway. With the correct v.c.o. frequency, the receiver is tuned to the wanted station requency.
The antenna r.ff signal is selectable by converting to the i.f. frequency. An upof 45 MHz and second i.f. of 455 kHz has been adopted so as to ensure a high image rejection ratio. Double-balanced modulaors are used in these two conversion stages istics such as intermodulation products, spurious noise, etc. New low-voltage highlevel balanced modulators, with which the
manufacturers claim a third-order intermodulation of -60 dB and a 1 dB comavailable. Although at the forthcoming WARC HF conference in 1983, any possible
planning of the shortwave broadcasting bands will be based on a double-side band (d.s.b.) sound broadcasting system, the introduction of single-side band (s.s.b.) transmissions has to be taken into ac${ }_{6}$ count t^{2}. A carrier reduction in excess of is also likely. A residual carrier is necessary for the operation of automatic-gain-control circuits in the receiver and for frequencyocking or carrier acquisition purposes. On for a sensible reduction of transmitter power consumption and running costs ${ }^{8}$. The upper-side band (u.s.b.) transmitting mode is likely to be used in the future shortwave broadcast s.s.b. transmission, ered in the s.s.b. detector design. As indicated a regenerated carrier signal from the carrier acquisition circuit mixes with the received carrier signal in the product deector stage. The audio information is then amplified after a low-pass filer level through audio amplifiers. The nature of possible carrier acquisition circuits is not discussed here for two reasons. Firstly such circuits are not easy to devise and secondly they deserve a long separate discussion.

WIRELESS WORLD JULY 1981
 - a -

BDS MICROSYSTEM DESIGNS LTD.
28 Pinewood Close, St. Albans, Herts. AL4 ODS

SIEMENS

Aquiet word from Siemens

Siemens produces a range of electronic teleprinters equire little maintenance thanks to a alugg-in fault diagnosis and modular design and construction. ELEPRINTERS are available in various contigurations with, or without, paper tape facilities or
keyboard, or with magnetic tape a attachments that will take the place of a tape reader and punch and provide convenient method of storing messages.
The Model 1000 Teleprinter uses aplastic type wheel version of the PT8O but using the ITA (No 2) elegraphy code can be supplied with eitherneedle or ink-jet matrix printing. Military orientated versions or specialised applications along with the Teleprinter 1000 CA crypto teleprinter and ancillary equipment covering error co
PRINTER TERMINALS using the ITA (No 5) code, which is used with most computer installations can b

Siemens-printer terminals are our business

THE W.W. DISK OFFER RE-OPENS AT LAST

We have obtained a limited stock of European single sided drives so please get orders in soon Circle the enquiry number for data
Total U.K. price including VAT at 15% and carriage, CWO

ONLY £155 EACH INCLUSIVE (Drive $£ 132, \mathrm{P}$ and $\mathrm{P} £ 2.78$, VAT $£ 20.22$)

Please make cheques and P.O.s payable to W.W. Disk Offer and send to:
W.W. DISK OFFER

49 Milford Hill Batford Herts
Please call 0582-429122 to check on availability before ordering

Allow 21 days for delivery. This offer applies to U.K. only and is subject to availability. For non
U.K. orders send SAE for quotation

FLOPPY DISK DRIVES NOW EVEN LOWER PRICES UNBELIEVABLE BUT TRUE! READON!

SIEMENS FDD - 100-8/FDD - 200-8 Fully Shugart Compatible Siemens 8 " single and double sided disk drives are
available now with unbeatabie erices at single unit pricing. Note these specifications:
 - AUTO WRITE WADTO

FDD 100-B
Single Side

Full range of SD SYSTEMS S-100 CARDS \& KITS ALSO AVAILABLE
Sond S.A.E.for forther detaili

IRVINE BUSINESS SYSTEMS

All models available for OEM as complete units or modules; also floppy disc drives.
WW - 007 FOR FURTHER DETALLS

Frequency-hopping military radio produced

A British firm, Racal-Tacticom Ltd, claims to be the first in the world to go into production
with a frequency-hopping military radio. Some of the first models, which operate at v.h.f.f, have been ordered by the Ministry of Defence for
evaluation by the British Army. Some are going to other NATO member countries and, accor ing to the company, will be in service in Europe within the next few months. The purpose of frequency-hopping (an "electronic counter-
countermeasure" in military jargon) is to avoid he unwelcome attention of jamming or interception of messages (known as "electronic uously in one channel, the radio communication system is designed so that the frequency, of oum transmitter and receiver, automaticall dom sequence. The equipment developed b Racal-Tacticom is a speculative commercial enture which they have been working on fo managing director of the company, says confi dently that sales of the product, which includes vehicle and manpack versions, 1980 are likeyghouty to run into hundreds of millions
1 f pounds from our traditional markets alone" Parts of the v.h.f. band from 30 to 88 MHz

Long distance digital music

Casually switching on my tuner to Radio 3
around lunchtime on the 17 th May, I heard a uperb performance of a Vaughan William vered that the music was coming live from Shanghai as part of a tour made by the BBC Symphony Orchestra. The second hal' of th
concert consisted of Beethoven's Fift Symphony, and as an encore, the orchestra payed a rip-raaring bravura Chinese. piece
alled 'How the good news was brought fro Peking to the villages'. All through the concer ne was aware that the quality of the transmis on was superb and it astonished,me to realis that it
world.
On checking with the BBC, I learned tha hey had used for the first time NICAM-3 (Nea which converts the stereo signals to digital form and then compressses them so that up to three stereo pairs may be sent over conventional
2048kbiss digital telephone systems. The signal was encoded at Shanghai, sent through a radi link to Peking, transmitted again via the geostaonary Intelsat over the Indian Ocean, receive hre British Telecom station at Madley, sen
hrough 'conventional' circuits to the BBC where it was decoded and retransmitted to us. It
took about a ook about a quarter of a second for sound made
ithin this range nine 6.4 MHz bands have een selected by Racal for frequency hopping
nd within a chosen 6.4 MHz "hop band" the frequency hops among 256 channels, each
25 kHz wide. The method of achieving this, and 5 kHz wide. The method of achieving this, and the necessary synchronization between
transmitter and receiver, were outlined in our earlier report on the prototype (December 1979
issue, p.85). The hopoing rate is described by ssue, p. .85). The hopping rate is described by
he maker as "medium" which means some ee maker as "medium", which means some idea of the spread-spectrum character of th ansmission can be gained from the spectrum quency axis represents. the extent of one "ho
band" of 644 tan . band" of 6.4 MHz . The small peaks are signal
spectra and are a record of the successive frequency positions of the signal in about 35 of the 256 channels over a fraction of a second. The arge-amplitude peak in the middle of the screen is the spectrum of a strong jamming signal, an
it can be seen how this is avoided by most of th positions of the frequency-hopped communica ion signal. Up to 50 "hopping nets", each using a dif
rent hopping code, can be operated in the erent hopping code, can be operated in th
same hop band simultaneously - and possib p to about 200 if they are not all working at th me time. Fixed frequency nets can also operated in a hop band. The system can unc ccupied by other signals, such as fixed fre uency, other hopping transmissions or laar see photo) and three rotary switches. The key board is used for changing the mode of opera
tion, for entering codes and for checking. Day on, for entering codes and for checking. Day the rotary switches. Transmission modes are F3 simples, voice, analogue information, and
digital data at rates up to $16 \mathrm{kbit/s}$. To protect digital data at rates up to 16 kb bits. To protect
certain frequencies in the hop band, or to avoid strong signals, up to 16 frequencies may be
barred from the hopping sequence in any hop and. Racal say that the price of their frequen f a conventional military transceive

pectrum analyser display shows a frequency hopping signal (small peaks)
spread out over a 6.4 MHz large amplitude signal in the middle is from a jammer.

A 50 -watt vehicle station. The central unit, with the keyboard, is the transceiver both the vehicle station and the manpack version.

It seems that we are going to need to learn another set of initials to denote yet another DBS, for direct broadcasting by satellite. The DBS, for direct broadcasting by satellite. The
Home Office has issued a report on the options vilable and a possible stratg for instituting a Under a plan drawn up by the International
Telecommunications Union (ITU) in 1977 , The UK has been allocated five DBS channels which could be beamed towards the UK from a geostationary satelitite of 1 west. Each chan-
nel would be capable of providing one tv service
en ra number of radio services with national coveage. Reception could be by individual
households, in which case an antenna and the appropriate converter would cost around $£ 150$ o $£ 200$; alternatively there could be a community receiving
by cable.
Various satellite systems are discussed in the document and their likely cost. For instance, a
wo channel system using ESA's European two channel system using ESA's European
Communications Satellite would cost about 15 m per channel per year over a ten-year period; a five-channel system broadcast via the -Sat, ESA's large satellite would cost about starting with a pre-operational system with a spare satellite held for launching, though if
there were a breakdown in the operational satel-

Component supplies

It is annoying to need a particular component
and not to be able to find a supplier. We have eceived two catalogues from new suppliers and ponents originally started as a supplier of spare parts to retail radio and tv repair shops they
have now expanded into a general component have now expanded into a general component
and tools supplier and still have some emphas (a and tools supplier and still have some emphas (a Thoe separate insalled a computer and offer to deliver all catalogued items by return of first
class post. They can cater for low and high volume orders and can offer regular deliveries to high volume users. The newest issue of the
catalogue describes in its 110 pages resistors, catalogue describes in its 110 pages resistors,
capacitors, semiconductors and industrial integrated circuits, opto-electronics, electromehanical components, tools, test equipment and linear i.cs. The catalogue is available from Ang-
lia Components, Burdett Road, Wisbech, lia Components,
Cambs PE13 2PS.
Anser
Another catalogue, from M.S. Components, also emphasises that all catalogued parts are
dispatched on the day that the order is received. The catalogue is of a similar sizee to that from Anglia; it contains some 2,500 separate items and it is promised that there will be a new

edition soon which will be increased to over 3 ,000 items. Among the many products one parti| cular service worthy of note is a transformer |
| :--- |
| rototyping service. M.S. can supply, within 48 | prototyping service. M.S. can supply, within 48

hours, transformers within the range 3 to 50 VA with the secondary voltage and current specified yy the customer, with a set price for each trans-
former of $£ 5.99$. Another notable point is that M.S. encourage the amateur constructor. You do not need to be an account holder and can buy
components over the counter on a Saturday components over the counter on a Saturday
morning, if you can get to M.S. Components, morning, if you can get to M.S. Components,
Zephyr House, Waring Street, West Norwood,
London SE27 9LH.
ite, there would be no service until the replace-
ment was launched.
Also discussed at length is the content and Auality of any proposed DBS se content and worldwide reputation or the service. With a omestic tv services and the high quality of our maintain that standard. Competition for the ake of audience figures can lead to a reduction ble to the public. With the introduction of the fourth tv channel in the UK ind the pition of the services recently announced, there could be many channels avaiable to the public. Another national service to provide bradcast programmes and other telecommunications services o the home. Bearing all this in mind, the report suggests that a modest start would be preferaThe report goes on to discuss some of the programme options. The BBC has proposed hat it should provide elelevision programme ser-
vices on two channels, one would be a subvices on two channels, one would be a sub-
scription films, and other BBC special produc-, ions, opera, drama, music and extended coverage of sporting events; all these would be
orun in the normal schedules. This service would not be financed from the net revenue of the tv licence fees. The second BBC DBS channel would be used for a service of retransmis-
sions of 'the best of BBC-1 and BBC-2' espeions of 'the best of BBC-1 and BBC-2' espe-
cially for those who are unable to view the programmes at the time of the original transmis-
sion. Another proposal for a subscription chan-
erincisally of recent the Granada group to consist principally of recent feature films. The Open given to an educational channel and this idea has been supported by a number of other organisations. Teletext and information services are also
mentioned. mentioned.
As regards the kinds of DBS serves that
might be provided, the general consensus seems to be for a 625 -line standard tv signal with the possibility of adding additional sound channels
for stereo, sound tracks in different languages or separate radio services.
Financing such a service poses major problems and it is suggested that it may be operated by a separate body acting as a common carrier broadcasting bodies. The establishment of the system would require considerable initial capital outlay, and there is the continuing running cost.
Licensing and subscription and advertising Licensing and subscription and advertis
revenues are some of the possible sources. Finally there are environmental aspects of DBS to be discussed. The receiving antennae are likely to have some visual impact on our
skylines although a dish as small as 40 to 50 cm in diameter might be possible under favourable conditions. A community reception centre with cable distribution to the individual household
might be preferable. For transmission to the might be preferabie. . or transmission to enty one transmission station would be needed compared with the 1,000 or so, cur-
rently in use for the terrestial service.

EBU proposes a world digital television standard

Western European broadcasters, through their organization the European Broadcasting Union,	will then be very similar. Because of the ferent field rates, of course, the numbe
	es per picture will
vision standard for studio equipment. They	The need for a worldwide standard in this
e it will be adopted throughout the world. It	of a recommendation by all
	the 3rd World Confe
IR study groups on this subject due to	Broadcasting Unions held in Tokyo in
$d \mathrm{in} \mathrm{Se}$	the USA the SMPTE has been studying the
d more television studio equipmen	ordinated its work with the investigations of this
going digit	ety. There are now indic
ent units is desirable. The EBU says that	for the EBU proposal from several of the broad-
red	
d	is pal
ge. It	-line and 62
atages for users and manufacturers,	
vements in the tec	兂
grammes shown in a country with a diff	North American National Broadcasters
television system from the originating count	National Rac
and assist the international exchange of technical information on television production".	Television Organizations of Africa.
The EBU standard is based on coding of the	Another digital
sparate components of the colour tv signal	d in the field of television is for viewdata
rather than the other possible approach, cod	
of the composite PAL, SECAM or NT	to standardize television sets as
colour signal. (Both of these methods have	
studied by broadcasters for several years.)	
EBU proposal the luminance signal compon	different viewdata systems, such as P
is sampled at a	UK, Bildschirmtext in
two colour-difference sig	etel in France. At the
6.75 MHz . Thus the standard is called " 13.5 :	dard is expected to be ratified in June by the
se parameters will be applicable to both 525 -	nication authorities, the Conférence Euro-
the number of samples per television line	tions (CEPT) at Bern.

Western European broadcasters, through their
organization the European Broadcasting Union, have proposed a set of parameters as a digital
elevisi television standard for studio equipment. They will in fact be submitted to the final meeting of
CCIR study groups on this subject due to be held in September this year in Geneva. The more and more television studio equipment is going digital and compatibility between difgerent units is desirable. The EBU says that an sive equipment, because of the economies of scale, and benefit international programme exvantages for users and manufacturers, lead to grammes shown in a country with a different and assist the international exchange of technical information on television production" The EBU standard is based on coding of the
separate components of the colour tv signal rather than the other possible approach, coding
of the composite PAL, SECAM or NTSC colour signal. (Both of these method have been
studied by broadcasters for several years.) In the EBU proposal the luminance signal component
is sampled at a frequency of 13.5 MHz and the two colour-difference signal are each sampled at .75: 6.75 " in shortened form. The EBU hopes line and 62 -line television systems and hence
that the number of samples per television line
will then be very similar. Because of the dif Tamples per picture will be differen feld was the subject of a ride standard in this the unions at the 3rd World Conference of
Broadcasting Unions held in Tokyo in 1980. In the USA the SMPTE has been studying the rdinated its work with the investigations of this society. There are now indications of support
for the EBU proposal from several of the broadcasting unions. For example, the Organizacion
de la Television Iberoamericana (OTI) has already given its support and this is particularly countries exist in the OTI area. Encouraging reactions are also said to have come from the
North American National Broadcasters Association and the Union of National Radio and

Another digital standard soon to be estab erminals - but in Europe only. Its purposes is viewdata is concerned so that a common set of different viewdata systems, such as Prestel in Teletel in France. At the time of writing the entral organization of the European teleco unication des authorities, the Conférence Eur-
céne
des péenne des Postes
ions (CEPT) at Bern

Technologists detained in USSR

Two professional workers in the field
electronics have been arrested in the USSR after nsuccessful attempts to obtain exit visas to enable them to emigrate from the country. Bo
are Jews. Kim Fridman, an electronics en neer, was head of the test department in the
Kiev Ras iev Radio Works. Viktor Brailovsky, a computer scientist, was a senior research fellow in
he Insitute of Electronic Control Machines Moscow.
Both
me
Both men appear to have run foul of the tific seminars in their homes, in spite of the fac hat these meetings were conducted on strictly egal lines and had no political content. Kim
Fridman's wife Henrietta, who visited these ffices recently, told us it is common practice or "Refuseniks" to hold such seminars, nainly to continue their scientific education and
keep their professional knowledge up to date. keep their professional knowledge up to date
The charge against Fridman is "parasitism"
"Refiseniks" are Soviet Jews who, having been con-
istently refused permission to emigrate to I Isral, are istently refused permission to emimgrate to istrat, are
ararased by the KGB usually dismissed from thei wars, and live in fear of arrest and trumped-up charges
tate and public order
Kim Fridin order. ber 1969 in anticipation of a three-year wai before he would be allowed to submit his application to emigrate. The official reason for refus ing him
"secrecy"
permission to lo leave the USSR is

- presumably it was considered he secrecy" - presumabil it was considered might be useful to an enemy of the state. Con-
sidering the date he left his iob, W ireless World sidering the date he left his iob, Wireless World
has expressed scepticism on the validity of this eason, which seems more like an excuse; and on the strength of our view the UK Foreign
office is arranging to have the Fridman case Office is arranging to have the Fridman case
heard at the Madrid conference. Up to the time of his arrest in March 1981, Kim Fridman had been doing temporary, unskilled work but had een finding it more and more difficult to obtan Viktor Brailovsky asked for an exit visa in

1972. This was refused in 1973 and shortly 1972. This was refused in 1973 and shortly afterwards he was dismissed from his post
Instiute of Electronic Control Machines. It is
is thought that his arrest, in December 1980, re-
sulted from his editing of a cultural iournal "Jews in the USSR", but the charge of defam-

beause the journal, which ceased publication in une 1979, was not political. After his arrest, other scientists tried to go to his home for
further seminars, at the invitation of his wife rina, also a computer scientist, but were turned way by KGB officers. Some time in 1981 the IEEE expects to publish a paper by Brailovsky Machine Intelligencioce.
All professional. workers in electronics will be
distressed to hear of the way these colleagues in distressed to hear of the way these colleagues in
he USSR are being treated by the authorities nd will hope for success in the efforts currently being made to help them.

New satellite earth station

 British Telecom are to build a new satellitecommunications earth station in wiltshire. An
87-acre site at Stert, near Devizes, has been 87 -acre site at Stert, near Devizes, has been
purchased, and the first dish aerial is expected to be operating by early 1986. About six aerials should be working on the site by 1990. This is
BT's third satellite tracking station and has T's third satellite tracking station, and has become necessary because capacity of Goonhilly
Downs and Madley is limited. There will soon be further Intelsat satellites placed into geo-
btationary orbits. stationary orbits. Apart from these, Inmarsat,
the international maritime satellite communication system, which the new station will also serve, is expected to grow rapidly in the next
few years, becoming operational in early 1982 . wears, becoming operational in early 1982 .
At the time of writing Intelsat V-B, the At the time of writing Intelsat. V-B, the
second of a new series of nine international communications satellites, was scheduled to be
launched on May 21 from Cape Canaveral Like launched on May 21 from Cape Canaveral. Like
its predecessor, Intelsat $\mathrm{V}-\mathrm{B}$ weighs $1,928 \mathrm{~kg}$ its predecessor, Intelsat $\mathrm{V}-\mathrm{B}$ weighs $1,928 \mathrm{~kg}$
and has almost double the communications capability of early satellites in the Intelsat series -
12,000 voice circuits and two colour television channels It will be positioned in geosynchronous orbit over the Atlantic Ocean as the main satellite to provide communications services be-
tween the Americas, Europe, the Middle East and Africa.

Dennis Baker has been awarded the British Telecom to present or former members of its staff, the medal is awarded for 'outstanding achievement in
telecommunications science and engineering.' Mr Baker was responsible for introducing silicon transistors into submarine cable repeaters. He developed a system for bonding the extremely thin
wires used in transistors onto the silico chip. The repeater amplifiers used may be t depths of three miles with pressures of up to three tonnes per square inch. They
need to have a guaranteed life of 25 years. The transistors developed by Mr Baker and his team have been in use in cables all en years. Mr Baker is also involved with integrated circuits and computer logic. He eads the team which is credited with coining the word microprocessor, and
currently working on small geometry circuits for the System X telephone exchanges, and on computer-aided design
for large-scale integrated circuits. He is hown here holding microphotographs of the metal-to-silicon bonds used in the
submarine amplifier transistors.

WIRELESS WORLD JULY 1981
The twins paradox of relativity
A composite reply to correspondence arising from Professor Dingle's October article

from Professor lan McCausland

Department of Electrial Engineering, University of Toronto

 sion widh him that the aricice came to be
wiften.
 I am sorry if Dr Wikie feels that he has been
singled out in an undesirable way by Dingle's
article. I understand that Dingle had planned to article. I understand that Dingle had planned to
rewrite the article in more general terms, withrewrite the article in more general terms, with-
out specific reference to Dr Wilkie, but he did not live to do this. I did think of making such derations myself, but 1 was reluctant to tamper with what Dingle had written.
Since Dr Wilkie describes his Dince Dr Wilkie describes his conviction that
Dingle is wrong ba being "unshakable", there is
litte that I Dittle that I can reply to him; but I would like to
make some comments about his make some comments about his letter which
may say something to others who may view the question as being still open.
In reply to Wilkie's comment that "most aca-
demic journals have for some years rightly demic iournals have for some years rightly
viewed the matter as settled and regarded more discussion of it as a waste of paper", and his final plea to "let it rest", I would simply observe that he was the one who published the item
entited "The Twin Paradox revisted" in
Nature in 1977 , which led directly to the writing Nature in 1977 , which led directly to the writing
of Dingle's paper'. of Dingle's paper
One of the inte
pone of the interesting features of the responses to Herbert Dingle's criticisms of special
relativity has been the variety of attempts to answer Dingle's question about the relative
rates of the equatrial and polar clocks rates of the equatorial and polar clocks
mentioned by Einstein in his original paper. mentioned by Eilistein in his original paper. there is an error or ambiguity in this example in Einstein's paper, and he later states that original
papers may not be definitive because "second papeughts may change the author's mind". It is interesting to note that, in the very example mentioned, we do have Einstein's second
thoughts available to us. If one studies tha example in the generally-accepted English ver sion of Einstein's first paper' ${ }^{2}$ (translated from
the text in a German collection published in the text in a German collection published in
1922), one finds a footnote which excludes the case of pendulum clocks, but that footrote does not appearar in the originally published version of the
paper. The later addition of the footnote seem paper. The later addition of the footnote seems
to me to confirm that Einstein did mean exactly what he said, and also confirms that the statement about the slowing of the equatorial clock
was intended to refer to a real slowing, no was intended to refer to a real slowing, not
merely something that depended on the point of
view of the observer view of the observer. According to Wilkie, Max Born answered in According to Wilkie, Max Born answered in
technical terms whose meanings were precis technical terms whose meanings were precise
and well-defined. As an example of Born's precision, consider the following statement, referring to the special theory': "The simple fac
that all relations between space co-ordinates and time expressed by the Lorentz transformation
can be represented geometrically by Minkowski can be represented geometrically by Minkowski
diagrams should suffice to show that there can
den diagrams should suffice to show that there
be no logical contradiction in the theory." Since
the Lorentz transformation is contained in the special theory, but is not the whole theory, it is
illogical to claim that any property of the, Lo-
he whole theory to be free of logical contradic-
tion.
With reference to Wilkie's statement that the
and language of relativity is geometry, not English
or German , Dingle did not question the impecor German, Dingle did not question the impec-
cability of the mathematics of special relativity. But the theory is based on postulates expressed in words, and the mathematics is not the whole theory; it was the theory as a whole that Dingle
criticized, not its geometry.
I agree with Dr Wilkie that some of Dingle's critics have tripped themselves up by their use of words. However, this is not always because of
the difficulty of expressing abstruse technica matters in words. Consider, for example, a case that I have documented elsewhere ${ }^{4}$, in which, in The Listener in 1971 , one scientist stated that the
results of the Hafele-Keating experiment supported special relativity, and another stated tha ported special relatid ny and ance whatever to the
the experiment had no slevanen that the results
special theory. Now, a stateme special heory. Now, a statement that the results of a certain experiment support a certain theory
is a perfecty simple factual statement (however abstruse and technical may be the reasoning that
led to that conclusion), and the same applies to led to that conclusion), and the same applies
the contrary statement. The fact that the two statements are contraries of one another (they
cannot both be true theugh they might both be cannot both be true, though they might both be
false) shows that one or other of the scientists false) shows that one or other of the scientists
(or both) misunderstood either the theory or the experiment (or both). Or it might mean that there is a contradiction in the theory.
In the note mentioned above ${ }^{4}, \mathrm{I}$ documented several other unsatisfactory statements that have been published by defenders of the theory. These cannot be dismissed as being merel
poorly worded, since most of them were uttere poorly worded, since most of them were uttered
by scientists who are prolific authors of books and who may therefore be reasonably expected to be able to write what they mean. I think w
should keep in mind the words of the anonyshould keep in mind the words of the anony-
mous diplomat (quoted by Sir Bruce Fraser it his revision of Sir Ernest Gowers' The Compleete
Plain Words) who said " w What appears to be Plain Words) who said. "What appears to be a
slopy or meaningless use of words may well be sloppy or meaningless use of words may well be
a completely correct use of words to expres sloppy or meaningless idea."
Wiikie's paragraph about all the scientists
who did not choose to seek fame by dethronin who did not choose to seek fame by dethronin
Einstein is very interesting, but totally devoid scientific basis. The pursuit of scientific truth not aided by statements such as: "That no young student over the last 20 years has seen the
chance to make his name by developing Profes sor Dingle's ideas is eloquent testimony to th erroneousness of these ideas.
Several other letters were received by the
Editor with varying degrees of relevance to the problem at hand. Before dealing with individu letters, examine the nature of the problem
According to Dingle ${ }^{5}$ a paradox arises when According to Dingle a paradox arises whe
from the same premises P, two (or mor apparently contradictory conclusions X and Y
seem inescapably to follow It can be resolved sem inescapably to follow. It can be resolve
nly if one of the following four things can b only if one of the following four things can b
shown: (1) the conclusions are not in fact contradictory; (2) conclusion X does not follow
(3) conclusion Y does not follow; (4) the

Furthermore, if we start with a pair of contra dictory premises, then, as Popper ${ }^{\text {has }}$ has pointed
out, we can infer any conclusion we like using valid rules of inference.
How does this apply to our problem? Suppose
that we have a set of premises P, and suppose that we have a set of premises P, and suppose
that one scientist (D) deduces from those premises a conclusion X , and that another (E) deduces from the same eremises a conclusion Y,
which is directly contradictory to X. Each which is directly contradictory to X. Each
scientist may believe that he has shown by h hi own deduction that the other's deduction is
fauly, but in fact both deductions might be perfeccly
which contain an internal contradiction Furthermore, even if hundreds of supporters of E come forth, each with a different argument showing that Y does in fact follow from P, these
do nothing whatever to show that D's deduction of X from P is faulty. To refute D's argument it is necessary to examine that argument itself an show that there is an error in it - in other
words, to show that conclusion X does not follow from the premises P.
In reading the literature on the twin paradox
one finds many articles showing ingenuity, with one finds many articles showing ingenuity, with
varying degrees of originality, and picturesque varying degrees of originality, and picturesque
detail, that asymmetrical ageing can be deduced from Einstein's theory. Many of these article present the arguments in such a way as to imply
that they refute the deduction of the opposite conclusion (symmetrical ageing), when in fact their results merely contradict the opposite result
and, for the reasons discussed above, contradic and, for the reasons discussed above, contrad
tion does not imply refutation unless it is firs proved that the theory from which the contradictory results hav from contradiction.
For example, one
de Limeletere, one of the correspondents, T de Limelette, writes: "But I agree that the soluall one could wish. I propose here my own. It all one could wish. I propose here my own. It is think it is clear from the foregoing that yet another presentation of the derivation of asym-
metrical ageing, without showing what is wron metrical ageing, without showing what is wrong
with the other argument, is not a solution to the wroblem that Dingle raised. T. de Limelett
 wonder where Professor Dingle picked up the
strange idea that two different observable des criptions of the same events are not permissible. A description requires observers, apparatus and
measurement procedures before it can be obmeasurement procedures before it can be ob
served. These are not left unchanged by change in the reference coordinate system. S why should the results of the measurements have to remain the same?" I am not quite surc
that is the point of this comment, unless it is to suggest that the rather bizarre set of observations envisaged by Dingle are in fact feasible. Dingle's argument. The relevant paragraph of his letter is as follows:

The situation according to Special Relativity
is as follows (for instance, see Introductio Relativity by L. Marder, Longman
968). According to Paul the outward and return journeys take $11 / 2$ days each, whils according to Petert they take 15 years each
Thus Peter iudges Paul's clock to be runnin Thus Peter judges Paul's clock to be runnin
low by the factor $15 \times 365 / 1.5=3650$. low by the factor $1 \times 3 \times 3$ lock $=3650$ by the same factor, and at the end of his utward iourney Paul says that $351 / 2$ second have elapsed on his own clock. Now suppos hat Peter had previousty placed a stationary clock synchronized with his own at the point
where Paul reverses his journey. Both Peter where Paul reverses his journey. Both Peter
and Paul will say that this clock reads 15
years at the end of the outward jounney and vears at the end of the outward journey, and
his is how Peter assigns a duration of 15 his is how Peter assigns a duration of 15
years to the outward journey. However, be-
cause he is moving relative to Peter, Paul
says that this additional clock is not synchronized with Peter's own clock but rather lead it by 15 years minus $351 / 2$ seconds: this is a example of the relativity of simultaneity. A soon Peter's clock now leads the local clock (which reads 15 years) by 15 years minus $351 / 2$ seconds. Paul measures $1 \frac{1}{2}$ days on his
own clock for the return iourney (making a own clock for the return journey (making a
total of 3 days) whils he judges that only a further $35^{1 / 2}$ seconds elapse on Peter's clock (making a total for the trip of 30 years),
According to Paul, Peter's clock therefore races forward by 30 years minus 71 second during the reversal; as discussed by Einstein this can be explained using General Relativity. Alternatively, since Paul changes iner
tial frames it can be atributed within Specia Relativity to a change in his definition of
simultaneity) Special Relativity does simultaneity, Special Relainy does no the beginning of the return journey, an Dingle's refutation of the theory on this basis is not valid. answer to Dingle's article. It should be recalled that Dingle was discussing Einstein's own reso
lution of the twin paradox, and that this resolution required the use of general relativity tion required the use of general relativity
(Einstein's article ${ }^{7}$ takes the form of a discussion between a relativist and a critic; the discussion of the paradox starts from special relativity but
the critic asks for a resolution that satisfied the general theory, and it was that resolution tha Dingle discussed in his article ${ }^{1}$.) This seems to me to suggest that Dingle's argument must be
met in terms of the general theory, not the special theory.
The other point to be noted about Einstein's resolution is that he agreed that it is perfectly
valid to consider Paul to be fixed throughout the whole course of events, provided that the appro priate fields of force are invoked. This mean Thomas's letter as follows: "Now suppose tha Paul had previously placed a stationary clock synchronized with his own at the epint wher
Peter reverses his journey Bo the will say that this clock reads 15 years at the end of the outward journey, and this is how Paul
assigns a duration of 15 years to the assigns a duration of 15 years to the outwar
iourney.") (In case it may be argued that the fields of force associated with the initial parting of Peter and Paul might upset the synchronization of that Pock, one can assume that Peter an
Paul are moving uniformly relative to on Paut are moving unifrmly relative to one
another at the start of the process, so that no fields of force are needed at the original parting.)
W. James writes that "Dingle gives a wholly spurious symmetry to the problem by assuming
that the Universe is empty but for the two clocks in his analysis (although in the statemen of the proble hat and can fird no such assumption stated; in fact
Dingle talks about the earth and a distant planet, whereas Einstein's statement of the same problem defines it wholly in terms of reference
frames. Einstein's article does not use any othe objects except the travelling twins to resolve the paradox, except that later in his paper, when his supposed critic suggests that the gravitational
fields are fictitious, he states that "all the star in the firmament can be conceived as participat ing in the creation of the gravitation fields". Id not think that Dingle would have objected to
this statement, and the fact that Dingle did no happen to mention all the stars in the firmament can scarcely be taken as equivalent to an asexcept for the two clocks. W. James also states: "The clock paradox of special relativity is stated in McCausland's
article 'if there are two clocks in uniform relative each clock to run faster than the other'. . "', fact my article ${ }^{8}$ does not even mention the clock paradox, much less state it. In the relevan
context I quoted a passage from Davies ${ }^{\text {en }}$, and then suggested that passage provided stron support for Dingle's claim that 'ifi there are two clocks in uniform relative motion, the specia
theory requires each clock to run (not merely theory requires each clock to run. (not merely
seem to run) faster than the other." If the passage I quoted from Davies does not support tha claim of Dingle's, then I think that some
should state clearly what it does mean. should state clearly what it does mean.
I. M. Crann states that Dingle tacitly assum some form of universal time, and that this as sumption of "absolute" time guarantees that
contradictory results will be obtained. I do no think that Dingle makes such an assumptio any more than Einstein did. Einstein stated quite clearly, in the passage Dingle quoted, that
retardation of a clock during one phase of the experiment was over-compensated by faster working during another phase, and that a clock tational potential. I think that Dingle merel tational potential.
followed Einstein's argument to its inevitable conclusion:
K. Burnet
K. Burnett (May letters) asks "Am I the only sics of Wireless World with an interest in physpecial relinds the long series of articles on ing some interesting comments about theories modern physics, he ends his letter by writing "When a new more inclusive theory arises which will enbrace quantum mechanics an
general relativity, I suspect that few general relativity, I suspect that few 'anti-rela
tivists' will like the result. But boring it won be." I do not know the grounds on which Burnett
bases his suspicion that few anti-relativists bases his suspicion that rew anti-relativis to
would like such a result. There seems to me to be a suggestion here that those who criticize relativity are like Luddites longing for a retrea
to pre-Einstein physics, whereas in fact they are trying to suggest that it is time for the scientific world to consider the possibility of moving on to post-Einstein physics.
Some correspondents, such as w. James,
M.H. de la Rica, R. V. Harvey, and A. B. Starks-Field, present alternative resolutions, o partial resolutions, of the clock paradox. For the
reasons given in my earlier comments, I believe that they do not meet Dingle's argument, because they do not identify a fault in his reasoning. M.M. Albahari (February letters)
suggests a new experiment to test the validity of relativity by a test of the constancy of the velocity of light, using time intervals four orders of magnitude greater han those in the Michelson that Dingle is wrong in believing that the mathematics of special relativity is impeccable; he states
wrong, and refers to his recently-published book "Einstein's Error". Other correspondents, such as C.L. Thomson, W.T. Morris, J. de-
Piere, F. Allen and J.A. MacHarg contrib uted interesting comments and suggestions, and V. Halsall contributed a discussion relating to Dr Essen's article in Wireless World dated Octo-
ber 1979. There
There is another letter which I think requires
comment, namely a letter by JH comment, namely a letter by J.H. Fremlin,
which appeared in New Scientist last year ${ }^{10}$, Some of the comments below were made in
letter that I sent to the editor of N an letter that I sent to the editor of New Scientiss in
October 1980, but to the best of my knowledge my letter has not been published. very much to refute the suggestion thend "like very much to refute the suggestion that oppo-
nents of the theory of relativity find it difficult to get a proper hearing". He might like to refute the suggestion, but his letter certainly does not
do so. The only evidence he presents in support claims to refute is related to the fact that paper have been denied publication. There is no have been published and the fact that others have been published and the fact that other
have been denied publication. Unfortunately ew people, except those who have direct exper paper published if it is critical of relativity. Part paper pubished if it is critical of relativity. Parc
of the problem is that almost all the evidenc bout papers that have been rejected is hidde Tom public view.
le's paper a was rejected by another iournal be fore his death. I have in my possession a copy of
the relevant correspondence (which spanned the relevant correspondence (which spanned a
period of several months) between Dingle and period of several months) but the journal has refused an equest for permission to publish its part of the correspondence.
own personal correspondence with Dingle, and his (Fremlin's) demonstration of the difference
to be expected between the ages of the pair of to be expected between the ages of the pair of
twins in the twin paradox. Although it is diffitwins in the twin paradox. Although it is difft
cult to comment on this without seeing all of th relevant correspondence, I suspect that Dingle analysis to be a non-existent problem. He wa convinced that the special theory contained an internal contradiction, and he knew that mean that it was possible, using valid rules of in-
ference, to deduce from the theory any conclusion that one wished.
${ }^{\text {Dr Wilkie did not think it was wise to publish }}$ Professor Dingle's article, because Dingle is
unable to defend himself. As I pointed out in my note accompanying the article, Professo
Dingle sent the article to Dingle sent the article to me in the hope that it
would eventually be published. I am conscious of the inferiority of my qualifications as a defender of Herbert Dingle, but perhaps I amy excuse my attempts by quoting a sentence from his last book, The Mind of Emily Bronte: "T,
disinter from a mass of diverse writing a common substratum demands penetration of a far higher order, and the only ground on which 1 absence of competitors." In fact there is a significant number of scient ists dissatisfied with the special theory of relativ-
ity. Anyone who doubts this should read the August 1979 and October 1980 issues of th journal Speculations in Science and Technology. happen to believe that Herbert Dingle was righ
in his thesis that the special theory is untenable, in his thesis that the special theory is untenable, an "unshakable conviction" on this. I am,
however, firmly convinced that the problems however, firmly convinced that the problems
raised by Professor Dingle have not been satisfactorily solved.
References.
I. Dingle, H. The "twins" paradox of relativity.
Wireles World, vol. 86 , October 1980, pp. $54-6$.
 et al, Methuen, 1923 .
3. Born, . Special theory of relativity. Nature, 3. Born, M . Sepecial theory of relativity. Nature,
voi. 1971 1933, p. 1287 .
4. McCausland, I., Science on the defensive 4. MCCaussand, I., Science on the defensive
Canadian Electrical Engineering Journal, vol.5, Apri
1880, pp. 314. S. Dingle, H. Science at the Crossroads. Martin
Brian \& O Keeffe

 7. Einstein, A. Dialog uber Einwande gegen die
Relativitistheorie. Naturruissenchaften, vol.6, 1918, 8p. 697 -702. 8. MCCausiand, I. Why not discuss relativity. Wire-
less World, vol. 86, October 1980 , .55 . M. Davies, P. C. . We. Sperace and time in the modern
universe. Cambridge University Prese
 10. Fremlin, , H. H. Special theor,
vol. 87,25 September 1980, p. 950 .

Low noise moving-coi preamp

Noise performance of this design is about 3 dB below many similar commercial units and the high-frequency response is -1 dB at 150 kHz without the 3 n 3 output capacitor. The output clips at about 500 mV and
below 150 mV , distortion is caused solel by the push-pull input stage. Cartridges with high impedances will give lowe distortion. High quality components must be used throughout and the circuit layout should be neat with no long connections.
The circuit shown has been optimised for an Ortofon moving-coil cartridge, but other types should also be suitable.

Performance	
Voltage gain	35 dB
Input impedance	20Ω
Output harmonic distortion (mainly 3rd)	
	$3 \Omega \quad \mathrm{R}_{\mathrm{s}} \quad 6 \Omega$
400 mV	0.32\%
150 mV	0.13\% 0.1\%
100 mV	0.1\% 0.056\%
50 mV	0.05\%
Noise (unweighted	10 Hz to 15.7 kHz

2 nV 4 transistors as shown 74 nV 2 transistors only
Frequency respo
$-1 d \mathrm{dBat} 15 \mathrm{~Hz}$
-3 dB at 50 kHz (see text)
R. Lee
Bradford

Video summing

amplifier

A simple video summing amplifier and limiter with an adequate bandwidth for
modest c.c.tv applications can be built us ing one LM318 op-amp. Because a sharp cut-off is required, to avoid overloading the monitor, the emitter-base junction of transistor is used as a limit sensing ele-
ment. Emitter current is $(\beta+1) \times$ base cur rent provided by the clip-level potentiome ter, which reduces the limiting slope by the factor β.
The circuit can be assembled on Vero are kept short. It is recommended that the $10 \mathrm{k} \Omega$ feedback resistor is mounted acros the top of the i.c. and the 5 pF capacitor mounted underneath the board. The LM318 can drive directly into a 75Ω load Glasgow
 filter, as described by Dr Pykett, there is a noticeable change in tone when a singlenote step is made from one filter to the
next. This can be overcome very effectinext. This can be overcome very effecti-
vely by grading the change. In the dia gram, note B drives filter no. 1, note C drives 66% filter 1 and 33% filter 2, note C sharp drives 66% filter 2 and 33% filter 1, and note D drives only filter 2 . The change
from one filter to the next is therefor spread between four notes and the abrupt the notes driving one filter should be at a low impedance input to avoid signals being fed back.
J. H. Asbery

Wembley
Middx.

Plotting oscilloscope

waveforms

This system enables a display to be plotted from an oscilloscope which has a delayed sweep facility. The oscilloscope is set in
the A -intensified-by-B mode so an unknown signal is displayed with a bright portion showing the extent of the delayed sweep. The delayed sweep gate, a pulse which corresponds to the intensified portion of the waveform, is used to operate
a sample and hold circuit whose output voltage is equal to the waveform voltage at the end of the delayed sweep interval. The output is measured by a digital voltmeter and fed to the Y axis of a X / Y recorder. An
X drive for the plotter is derived from the wiper of the delay-time multiplier potentiometer in the oscilloscope. To plot a waveform, the potentiometer is rotated through its full range, which drives the pen horizontally while the sample and hold
circuit drives the pen vertically. The sample and hold circuit can be fed from the oscilloscope ChI out terminal, which provides the plotter with vertical deflection features such as adjustable scale factor, ac/0/dc co
tioning.
To calibrate the plotter, ground the n appput, position the trace vertically at an appropriate reference point and scan
horizontally using the delay-time horizontally using the delay-time
multiplier control to write a reference line. The plotter is then adjusted for full deflection, i.e. one inch for one c.r.t. horizontal division. As with any sampling system, the waveform must be repetitive, and trigger jitter on the oscilloscope will blur the plotter waveform
powerful computer can form the basis of a acquisition system. In this case, the position of the B gate pulse is set by a control voltage from the computer.
As the waveform samplés are digitized increased and the sampling position is scanned across the waveform. Although his is a slow data acquisition system, the progress of digitization is visible. The

voltage which controls the position of the B sweep gate pulse must be derived from an external source, so the oscilloscope
needs to be slightly modified.
needs to be slightly modified.
The computer can determine many waveform parameters such as peak, mean,
r.m.s. and harmonic content via the r.m.s. and harmonic content via the
Fourier transform, but the bandwidth of the system is limited by the sample and hold circuit. A prototype system has been constructed using two ports in a PET computer to control the converters, and the digitization process was programmed in P. D. Hiscocks Toronto
Canada

Variable output regulator

A small modification to the normal three terminal regulator circuit will provide a number of output voltages and retain the short-circuit protection of the regulator.
Many designs have been published which increase the output voltage by returning the common terminal to a positive pedestal but, if the common terminal is returned to a negative pedestal, the output is reduced This circuit uses Zener
vide switched outputs below 15 V however, the diodes could be replaced by an adjustable low power regulator. A 1N4002 protects the regulator from re-
verse voltage if the output is shorted. Dual verse voltage if the output is shorted. Dual
supplies can be provided by adding the opamp and transistor shown, but the negative rail is not protected.
J. McDonald Hants.

Designing with microprocessors

9 - More on interrupt-driven circuits

by D. Zissos and G. Stone

Department of Computer Science, University of Calgary, Canada

Procedures for the step-by-step design and implementation in interrupt-driven microprocessor-based systems are described in this article. The authors show that the interface hardware is
the same for both vectored and nonvectored interrupts, and that it is vectored interrupts, and the
microprocessor chip used. Fullyworked out examples, using the Intel 8080 and the Motorola 6800 chips ments.

As explained in the first article on this subject (June issue), interrupt-driven circuits are used when sensitivity to the enviwith equipment and/or processes which, when they malfunction, require fast corrective action to avoid catastrophies that may result in damaging equipment, hutting down systems and so on.
The concepts we used to develop such
systems are straightforward, involving basically the equipment or the process signalling the micro-processor when it wishes to communicate with it, and waiting for the microprocessor to respond. This resulted in the development of an uncomplicated
interrupt configuration, whose block diagram is shown in Fig. 7 in the June article. For ease of reference this diagram is reproduced here as Fig. 1.
The function of the interrupt controller in Fig. 1 is to generate the interrupt reare present, and to provide the microprocessor, when it responds to the interrupt request, with some meaningful information which allows it to vector to the appropriate service routine. The meaningue dig-
formation is denoted variable i. The design and implementation of interrupt controllers and a review of support chips implementing their function will be considered in a later article.

Interface hardware
Although at first sight the design and im plementation of the interface hardware uninitiated), in practice it turns out to be a straightforward process, as we shal demonstrate next. Our starting point is Fig. 1, which clearly indicates that the interface hardware is a logic circuit whose
function is to monitor the status signals of the peripheral (which may be either equip-
ment or a process) and generate flag f_{n} when the status signals indicate to it that he peripheral wishes to communicate with he microprocessor. The interface then pond electronically.
Note that the flag simply requests a response from the microprocessor, which may well be ignored, if masked by the programmer. To avoid blocking microprocessor responses to emergencies, an in-
terrupt pin, which cannot be disabled by software, is also provided in most cases. The interrupt signal using this pin is referred to as a non-maskable interrupt, to discriminate it from maskable interrupts, mands for microprocessor responses.
When the microprocessor responds, it generates the electronic 'go ahead' signal which, as explained in the June article, consists of i / o signal(s) associated with
predetermined i / o address $($ es $) ~-~ s e e ~ F i g . ~$ 1. The nature of the 'go ahead' signal is described in detail in article 5, published in the October 1980 issue. On receipt of the i/o signal(s), the interface generates the In order to prevent the flag from continuously interrupting the microprocessor, the interface must clear the flag.
Since the interrupt controller does not send a signal back to the interface, it follows that interrupt interfaces are indepenlers. That is, the interface hardware in
interrupt systems depends only on the peripheral and not on whether vectored or non-
vectored interrupts are being used. vectored interrupts are bermere, because the microprocessor response consists of ilo signals, whose nature does ponse vany greatly from microprocessor to

not microprocessor, the interface hal idenical for all types of microproces| sors. |
| :--- |
| Inte |

Interrupt interfaces, in common with al other interfaces, are designed and implemented using well-established procedures
that always work ${ }^{1}$. We shall demonstrate the simplicity of the design procedures and lack of complexity of their implementation by means of a design problem, after we
describe the nature of the interrupt software.

Interface software

As in the case of the interface hardware As in the case of the interface hardware,
the interrupt software is relatively uncomplicated and should present no difficulty to the reader who possesses some knowledge of programming. In the author's exper practice is lack of proper initialization procedures, which results in unwanted signal spikes (glitches) that are generated on interrupt lines during hardware and/or software initialization of interrupt in

Fig. 1. Basic configuration of an interrup syste.
sue).

Table 1: Mnemonic and hex listings of the count and print routines used in the event counter

We will implement the design using an action/status printer, and either the Intel 8080 or the Motorola 6800.

Solution

Step 1: aim of the design. To demonstrate the steps used in designing and implementing interrupt interfaces.
Step 2: resources. A microprocessorbased system and an action/status character printer.
Step 3: our solution. Our solution consists of evoking a COUNT routine when an

shown in Fig. 6(a). Switch m is connected
directly to the clock terminal of flip-flop 6 , directly to the clock terminal of flip-flop 6 ,
allowing it to be set each time switch m is pushed and released. Similarly the output of the sensor is connected directly to the clock terminal of flip-flop 7, which also allows it to set each time the sensor gener ates a pulse.
We can
the two flip-flops by programmer to rese ware-generated i / o pulses to their clear terminal. For this purpose, we can use two AND gates, 3 and 4, as shown in Fig. 6(a).
The i/o addresses 63 and 62 are used for this purpose. That is, flip-flop 6 is reset by executing an OUT instruction with address 63 and flip-flop 7 by executing als an OUT instruction with address 62 . disable the interface, we can introduce a third JK flip-flop which is set by executing an OUT instruction with address 60 , and reset by executing an OUT instruction use the output E of this flip-flop to AND use the outpu,
flags f_{6} and f_{7}.
The final function of the interface is to activate the printer. We can either use a
separate OUT instruction separate OUT instruction for this purpose
or simply connect the output of gate 4 to or simply connect the output of gate 4 to the action terminal of the printer. This
causes execution of OUT 63 both to clear f_{6} and activate the printer at the same time. This, in addition to saving an extra gate, also avoids using an extra i/o instruction. Step 5: software design. The COUNT
and PRINT. routines are shown in Table 1 .

6800 implementation

Step 4: hardware design. We use the same procedures to derive the interface
hardware of the Motorola 6800 . The reader's attention is drawn to the fact that the two interfaces are almost identical. Step 5: software design. The PRINT and COUNT routines are shown in Table 1 . Well-defined steps for the design and
implementation of interrupt interfaces implementation of interrupt interfaces
have been demonstrated. Specifically, it has been shown that the interface hardware is the same for both vectored and non-vectored interrupts and that it is almost indep

References

1. Zissos, D. "Problems and Solutions in Logic
Design," Edition 2, Oxford University Press, 2. Duncan, F. G. "Microprocessor Program2. Duncan, F. G. "Microprocessor Program-
ming and Software Development", Perntice-
Hall, 1979.

The next article in the series will deal with interrup
controllers.

Correction note

Data store by running average, May 1981, contained three incorrect hex bytes in the machine-code list. The correct values are Address Addres
02 E 4 02E4
03 D
03D0

Which way h.f. broadcast receivers

continued from page 67
The prescaler and prom devices used quite expensive at present. A 'direct entry without calculation' method could be used or replace the prom devices, but the cos reduction would be balanced out by add to the fact that no simple arithmetic rela tion exists among the shortwave broad asting bands. An alternative approach is however, to ask whether a rearranged fre quency allocation plan could end up with a system functional block diagram. The sug gested frequency allocation proposal is isted in Table 3. The amount of spectrum allocated is the same; but the band edg larting frequd presed WARC fret ARC freque

TABLE 3. Suggested proposal $\underset{3.900 \text { to } 4.390}{\text { If }} \underset{48.900}{\text { osc (}}$ (MHz) $\begin{array}{lll}3.990 \text { to } 4.390 & 48.900 \text { to } 49.390 & 48.895 \\ 4.600 \text { to } 4.945 & 49.600 \text { to } 49.945 & 48.895+0.70\end{array}$

 4.400 to 14.89059 .400 ot $59.899048 .895+10.500$
6.5500 to 1.69061 .50
to 61.990
$48.895+12.80$ 20.700 to 21.19065 .700 to $66.19048 .895+16.80$
24.900 to 25.390
69.900 to $70.39048 .895+21.000$

Prior to the programmable divider, th v.c.o. output is converted down twice
first by a fixed 48.895 MHz frequency sis nal, then by a correspondent band offset frequency signal generated from a one sig nal source and selected through multiplie or dividers. After these conversions, th v.c.o. frequency is equal to the chann quency; therefore the programmable divider can be programmed directly by the b.c.d. number in the channel memory nit. Because of the low v.c.o. frequenc vider, no prescaler is required. After com parison with the reference signal in the phase comparator unit, an error voltage is generated through the loop filter to correct the v.c.o. frequency. The fact that the quired, the whole system cost is greatly reduced because of the frequency allocation The r.f., i.f. signal amplification and selection, sideband detection and audio mplification are the same as the firs stem approach

Microprocessors
Microprocessors have invaded almost Microprocessors have invaded almost every branch of electronic technology
which includes radio communications as well. There is no doubt about some advantages of using microprocessors in product design, such as: "intelligent" products, easy design modification and reduced as
sembly and testing cost, is a long-term prospect. To see whether a popular
shortwave broadcast receiver could benefit shortwave broadcast receiver could benefit
from this new technology or not, we check
the necessity of using microprocessors against the basic requirement of the majority shortwave broadcast listeners. could be used to replace Ch/Band witch unit, memory unit and prom (2) ${ }^{2}$.
fter Good performance: no improvement fer using microprocessors unless a sophisticated sel
is implemented.
(3) Low cost: sing microprocessors is the requirement of reinvestment for new tools and resources and possible re-training in production engineering. Although the unit cost of the microprocessor is low, the overall unit receiver cost could be the same as when
specially developed 1.s.i. device is specially developed l.s.i. device is pro-
duced for a large number receiver market ${ }^{-}$. Today, due to the advanced integration echnique, most parts of the system block diagram could be integrated as a few i.s.i. modules, and consequently the assembly Therefore, unless a multi-functional re ceiver is demanded ${ }^{6,7}$, we do not see a desire to use microprocessors in popular

Conclusion
Two system approaches have been desreceiver design Bopular shortwave broadcas simple "tuning by channel" operating philosophy. They also bring out realization of an easy-operating, good performance a

References

1. E.B.U. Document SPB 108, "Statistics on
he' present occupancy of the h.f. bands for he' present occupancy of
broadcasting", Sept. 1979
2. E.B.U. Document SPB 130, "joint meeting berween representatatives of national receiver and ansmitter manufacturers' associations an 3. PEEK, J. B. H. and SCHMIDT, J. M., "A station programme identification (s.p.i. system
for f.m. sound broadcasting)" International or f.m. sound broadcasting)", Internationa
3. The P.I. System, leaflet issued by the Swed WHYTHE D. J. and EI Y S. R "Da ad identification signalling for future radio r ivers", IEE/IBC Conf. No. 166, Sept. 1978 p. $324-326$ on", Wireless World, Jan. 1980, pp.54-58. FUKUK, et al., "Portable all-band radio receiver using microcomputer controlled PLL
synthesizer", IEEE Transactions on Consumer Electronics, Vol. CE-26, Aug. 1980. Electronics,
E.B.B. Document SPB 66, Appendix 2 ,
Economic aspects of s.s.b. Transmitters", June 1978.
4. SYED, I. A., "Simplified 1.s.i. Design", 9. SYED, I. A., "Simplified 1.s.
New Electronics, Jan. 27 th, 1981 .

New Electronics, Jan. 27tha, 1981 .
10. Long- and medium-wave Broadcasting Con-
ference Geneva 1975, ERU Document. 140 F , ference, Geneva 1975, EBU Document - 140 F , 11. Macario, R. C. V., "An all digitally uency broadcasting plan", IEE/IBC Confe uency broadcasting plan", IEE/I.
nce No 166 , Sept 1978, pp $330-332$.

SI units, with L,M,T,Q dimensions provide a single consistent set fo applications. The presence of the \mathbf{O} dimension distinguishes electrical from purely mechanical phenomena.
"Units of the world unite: you have nothing to lose but your dimensions!" If scientists used slogans as politicians do, this might have been the call for the introduction of SI (Système International) units
which unify electrical and mechanical units. As far as electrical units are concerned, they appear to involve little change from MKS units, though there is a change in the status of those odd but essential constants, ϵ_{0} and μ_{0}. The change is more
drastic in mechanical units, which might drastic in mechanical units, which might
be said to have been brought into line with electrical practice. In particular, it is now recognised that heat and mechanical energy are within limits interchangeable, something which was demonstrated by Rumford in 1798 and first quantified by
Joule in 1842 . The result is that heat energy is in future to be measured in joules ${ }^{\star}$ instead of in calories. The equivalence is 'within limits' because the experi-
ments of Rumford and Joule were conments of Rumford and Joule were con-
cerned with the transformation of mechanical energy into heat; but the converse transformation is subject to Carnot's law, that the proportion of heat which can be transformed to mechanical energy cannot exceed $\left(T_{1}-T_{2}\right) / T_{1}$ where
T_{1} and T_{2} are the upper and lower temperatures, e.g. temperatures of boiler and condenser of steam plant. It is this limitation which gives rise to the allegation that electric power stations have an "efficiency" of only about one-third. have only one set of units instead of three for example current is now measured only in amperes, discarding the c.g.s. electro magnetic unit of current which was equal to ten amperes and the c.g.s. electrostatic
unit which was equal to one-third of a nanoampere. (The reason for the ratio between electromagnetic and electrostatic c.g.s. units being numerically equal to the velocity of light will appear later.) A MKS into the SI system is that of rational-

* For large quantities of heat energy, which
have often been expressed in tonnes of coal equivalent or tonnes of oil equivalent, the unit much bigger than a mes
(EJ) which is 10^{18} joules.
ised units. This idea is that a factor involving π can reasonably be expected in circumstances involving spherical or circular geometry, e.g. the electric field around a charged sphere or the capacitance between
concentric cylinders, but not where the geometry is planar, e.g. the capacitance between two parallel plane electrodes. (C.g.s. formulae are exactly the reverse of this.) The simplest electrical formula is
that for the potential V at distance r from a point charge q :
$V=\frac{q}{4 \pi \epsilon_{0} r}$
4π is the rationalising factor, since the system has spherical symmetry; and if q is in coulombs and r in metres, then V is in volts. How does this happy coincidence of units come about?
Through choice of a suitable value of ϵ_{0} of
course! So the first function of ϵ_{0} is to be of the right size as a unit-forming constant. Mechanical units also are brought in through the formula for the force F be-
tween two charges:

$$
\begin{equation*}
F=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} r^{2}} \tag{2}
\end{equation*}
$$

The force F will be in Newtons. It is convenient also to introduce the idea of an
electric field E such that $F=q E$ and E in volts per metre is given by
$E=\frac{q}{4 \pi \epsilon_{0} r^{2}}$
So far it has been assumed that nothing else is present apart from the charges re presented in the formulae, i.e. that the very nearly the same if they are in air.) Now suppose the charges are immersed in a fluid having a property described as relative permittivity ϵ_{r} (relative to a vacuum) which is none other than what we have value is usually dependent. on frequency and temperature, but is around 2.3 fo benzene, 7 for porcelain and 80 for wate at low frequency and room temperature. I is an experimental fact that equation (2) now becomes
$F=\frac{q_{1} q_{2}}{4 \pi \epsilon_{\mathrm{r}} \mathrm{E}_{0} r^{2}}$
and so (3) is changed to
$E=\mathrm{q} / 4 \pi \epsilon_{\mathrm{r}} \mathrm{E}_{0}{ }^{2}$
(3a)

In order to obtain a quantity which de pends only on q and r, not on the sur rounding
$\epsilon_{\mathrm{r}} \epsilon_{0} E=q / 4 \pi r^{2}=D$
(3b)
The new quantity D was originally called the flux of electric induction. It has the useful property that the integral of charge
any closed surface is equal to the cher enclosed (Gauss's theorem in rationalised units): this is obvious in (3b) if the charge
is imagined to be surrounded by a sphere is imagined to be surrounded by a sphere
of radius r and therefore surface $4 \pi r^{2} . D$ is measured in coulombs per square metre in SI units. Note that ϵ_{0}, as well as ϵ_{r}, has been transferred to the left-hand side of (3b); and ϵ_{0}, which we originally intro-
duced as a constant serving to give the duced as a constant serving to give the
right size of unit, is commonly called "the permittivity of free space", which is where the controversy begins. Some physicists argue that permittivity is a property of matter, and therefore free space canno have a permittivity. Accordingly, they
claim that the c.g.s. system of units is claim that the c.g.s.
inherently correct in putting $\epsilon_{0}=1$, because in free space D must then be the same as E, not merely numerically equa to it. Engineers find it convenient to distinguish between D and E because engimaterial objects. ${ }^{\dagger}$ (It is also a link with displacement current, but that is anothe story.) However, there is also a conceptua argument that D is a causal property of
charge and that E is an effect which may charge and that E is an effect which may
be modified by the interposition of a be modified by the interposition of ${ }^{\text {material medium having the proper }}$ constant ϵ_{r}; and ϵ_{0} is no necessarily a pure number but is the con stant factor relating effect E to cause D. This makes D appear to be more funda-
mental than E, though in practice it may be difficult to say which is the hen and which is the egg!
It is now known that magnetic pheno mena are manifestations of currents, which
can usually be identified with charges in can usually be identified with charges
motion. The relevant formulae look more complicated because a current, unlike static charge, has direction as well as mag nitude; and the equations therefore have to be in vector form. Most of them, however,
can be obtained from the analogous
\dagger Perhaps one should qualify this as "old
fashioned engineering", since there is now tall fashioned engineering", "software engineering"
electrostatic equations by the rule-of-
thumb procedure "replace scalars and scahumb procedure "replace scalars and scaar operations by vectors and vector opera-
ions and replace $1 / \epsilon_{0}$ by μ_{0}. . Thus the magnetic equation analogous to (3) is

$\mathrm{dB}=\mu_{0} \mathbf{i d l} \times \mathbf{a}_{r} / 4 \pi r^{2}$

and the analogue of (2) is
$\mathrm{dF}=\mu_{0} \mathbf{i d l} \times \mathrm{i}^{\prime} \mathrm{dl}^{\prime} \times \mathbf{a}_{\mathrm{r}} / 4 \pi r^{2}$
Because the different parts of the current circuit) may be at different distances from ne point of observation, equation (4) give etic effect \mathbf{B} at a given point, the contriation being that due to a short element id of the current, which is at distance r from vectors, the symbol \times here represents vecor multiplication and \mathbf{a}_{r} is a unit vector in he direction of r. Equation (4) means that the direction of $\mathbf{d B}$ is at right-angles to both the direction of current flow and the
direction of r. (This is part of the definition of 'vector multiplication'.) Note that an equation for \mathbf{B} has been offered as analagous to the one for \mathbf{E}, a consequence of eplacing $1 / \epsilon_{0}$ by μ_{0}. In fact \mathbf{H} is the property of current which is independen Gauss's theorem for \mathbf{D} is that the line interal of \mathbf{H} round a closed circuit is equal to he current enclosed) and therefore analgous to \mathbf{D}. This time we are accustomed effect. Initially μ_{0} also can be regarded as unit-forming constant, the function of which is to ensure that the force between wo currents comes out in Newtons So much for units; but what of "dimenions"? It is familiar that all mechanica
units can be related back to the fundamen tals of length, mass and time: for example, orce $=$ mass \times acceleration leads to dimensional relation $[F]=\left[M L T^{-2}\right]$ Some quantity additional to L, M and and in the c.g.s. system this was taken as either ϵ or μ so that every quantity had tw ets of dimensions as well as two sizes of it. What can be demonstrated experi mentally, by giving a capacitor a charge units and discharging it through a mete which measures the current in c.g.s. electromagnetic units, is that the ratio of umerical values in the two sets of units is of light. It is, moreover, implicit in Max well's equations that the velocity of propa sation of electromagnetic radiation is $1 /(\mu \epsilon)^{1 / 2}$ from which it is deduced that the inverse of the product of μ and ϵ has th
dimensions of the square of velocity. There is no certain method of divid dimensions $L^{-2} T^{2}$ between μ and ϵ. But it seemed a plausible conjecture (no more) that since magnetic effects are due to charges in motion the dimensions of equation (5). Since current = charge/time, the current-length product idl is equiva lent to a charge-velocity product; and if μ_{0}
has dimensions which differ from those of
ϵ_{0} by $L^{-2} T^{2}$ then μ_{0} will cancel out the velocities in idi and i^{\prime} di ${ }^{2}$ and we shall have
force related to charge $^{2} /$ distance 2 in both (5) and (2). It is tempting to suggest that if μ_{0} has only the dimensions of velocity ${ }^{-2}$ and ϵ_{0} is purely numeric, then the dimensions of charge can be expressed in terms
of L, M, T through either this could be a trap for the unwary. It is equally possible that there is an electrical dimension which appears equally in μ_{0} and $1 / \epsilon_{0}$ and therefore cancels out in the product μ E. It is equally plausible, however, the electrical phenomena must involve
more than the purely mechanical dimensions of length, mass and time. In SI units, therefore, one takes the reasonable step of taking Q as a further dimension to add to L, M, T. On (5) that ϵ_{0} and μ_{0} have dimensions
$L^{-3} M^{-1} T^{2} Q^{2}$ and $L M Q^{-2}$ respectively. M and Q cancel out in the product $\mu_{0} \epsilon_{0}$ eaving the dimensions $L^{-2} T^{2}$ of velocity ${ }^{-2}$. One might wonder how this squares f farads per metre and henries per metre respectively. The fact is that both farads and henries involve all four L, M, T, Q dimensions (as can be seen from the fact that $1 / C V^{2}$ and $1 / 2 i^{2}$ are energies) so that these pecifications are suil valid in the self-crant ifference between the MKS and SI systems is the SI postulate that Q should e taken as the electrical 'dimension', in ontrast to both the c.g.s. and MKS μ ampere) was half-way there. But incidentally, ϵ_{0} and μ_{0} now have dimensions which is contrary to the c.g.s.-based argument that D and E are identical in fre pace. I wonder how long the matter will
be allowed to rest there.

Literature

received

ngineering Bulletin 3539A from Sprague des cribes a range of Tanite chip capacitors with conformal plated terminations. The capacitors re of the solid-electrolyte type, for use in hy-
brid circuits. The bulletin can be obtained from bria circuits. The bulleun can be obtained from
he UK distributor, Hy-Comp Ltd, 7 Shield the u, distributor, Hy-Comp Ltd, 7 Shield
Road, Asford Industrial Estate, Ashford,
Middlese TW 15 IAv.
WW401
Catalogue of components and instruments is
available from HRS Components, Ltd, availabe from HRS Components, Ltd,
Brashouse Passage, Birmingham B1 2HR
hort catalogue describing a range of plastic film capacitors wisth values in the range 100 pF $20 \mu \mathrm{~F}$ can be obtained from Ashcroft electro TWW. Leaflet on the 3 M Videodata communication ystem for installation in buildings is available This is nothing to do with a videotext system, uut is concerned with the use of coaxial cables data throughout a building. The system is broadband, which allows the connexion of new quipment relatively cheaply. Copies from Mike Lid., 3M Houcse, PO Box 1, Bracknell, BerkLiire RGI2 1JU.

Sound synthesis using Walsh functions

continued from page 64

..s.i. implementation, interested readers may like to consider the application of
computer-generated Walsh functions Clearly a microprocessor-based system could be realised enabling the software implementation of fully polyphonic musical sounds.

Effects of relative phase of harmonics
If a sinewave oscillator is set to a frequency passing through a variable phase shift net work with that of a second sinewave oscil. lator of frequency 440 Hz , the resultin alters as the relative phase of the two components is varied. If the waveform is also listened to however no apparent change in sound is perceived by the ear, regardless of the phase relationship. Therefore as far as lative phase of the individual partials in direct Fourier synthesis is irrelevant. With regard to Walsh harmonics, B. A. Hutchins, whose work first prompted my synthesis experiments using different Walsh/Fourier series for the same waveform and has demonstrated differences in tone colour which are directly attributable to the use of different phase relationships. The effect is connected with the problem
of monaural phase ${ }^{4}$ Interested readers may like to generate the triangular wave mentioned earlier using the Walsh/Fourier series than quoted, and compare the sound Fourier sores 0.5 wall $-0.125 \mathrm{wal13},-0.063 \mathrm{wal2} 29$ is used

Acknowledgment. The concept of using Walsh functions for musical synthesis was first suggested by Dr C. Frederick of the search, Cornell University.

References

K. Siemens and R. Kitai, Digital Walsh ourrier analysis of periodic waveforms, IEEE J. L. Walsh, Closed set of normal orthogona A merican Yournal of Mathematics, vo 3. H. F. Harmuth, Transmission of Information
by Orthogonal Functions, 2nd Edition, by Orthogonal Functions, 2nd Edition 4 V. Lozhkin, Monaural phase effects, Soviet
Physics Acoustics, vol. 17, no. 1, July-Sept 1971.

NIEW PTODDUCTIS

INSIST ON

VERSATOWER

BY PROFESSIONALSFOR PROFESSIONALS

The VERSATOWER range of elescopic and tilt-over towers cove $36 \mathrm{M})$.

Designed for Wind Speeds from 85 mph to 117 mph contorming with CP3 Chapter V, part 11

Functional design, rugged construc tion and total versatility make it firs choice for telecommunications

Trailer mounted or static, the VER SATOWER solves those difficul problems of antenna support, ac

A programme of continuous produc development has led to a range o over 50 models, all available a highly competitive prices. This
coupled with our quality assurance scheme ensures that we maintain the leader position we enjoy today.

VERSATOWER

THE PROFESSIONALS

 CHOICE

PORTLAND HOUSE, COPPICE SIDE ROWNHILLS, WEST MIDLANDS ww-067 FOR FURTHER DETAILS

FOTOLAK
positive light sensitive aerosol lacouer Enablos YOU to produce perfect printed icircuits in minutes!
 Any number of exact copies can of course be made from one master. Widely
used in industry for protorye work.

$408 \mathrm{~mm} \times 228 \mathrm{~mm}$
$467 \mathrm{~mm} \times 305 \mathrm{~mm}$

Single-sided: Double-sidec

G. F. Powitige and packing EOp per order. VAT 15% on total

TEEEUSTIOM

...the only magazine in Britain that gives the amateur enthusiast and protessionale erage of. TV technology. Coverage includes the latest developments in circuitry, video and los distance television... with a specid finding.
Rer construction articles have included Regular construction monochrome \& colour receivers, monitors and a video came THIS MONTH
VIDEO EFFECTS GENERATOR A versatile monochrome studio set-up

ECRONIC AERIAL SWITCHING ELECTRONIC AERIAL SWious design Roger Bunney's lat E PROJECT-part 3

ON SALE NOW

SERVICING THE EC HYBRID COLOUR SET

SALE BY AUCTION Due to a shift in concentration and production, the
machines, assembly lines and also the entire plant and business equipment of a works are available. On behalf of
the management of the firms GTE /Sylvania and Schwarzwälder Electronik Werk lan selling by auction the plant of the firm.

$$
\begin{aligned}
& \text { Aussere Ailinger Strasse } \\
& \text { Aut }
\end{aligned}
$$

990 Friedrichshafen, West Germany
Tuesday, 7th July, 1981, 10 a.m. For auction: Flow soldering plant with immersion bath, armament lines, ceiling circular conveyor, paint spray stations, dry
ing kilns, ultrasonic degreasing plant, assembly lines, modern electroplating equipment, winding machines, machines, testing compartments, transformers, hydraulic and pneumatic punches and presses, (Lifetestwagen) spot welding machines, rotary heat kiln, aerosol recoven
plant, freon degreasing platit, mixer, Wolfram welding equipment, continuous heating kiln, hydrogen hatch kiln, 110° colour tubes as well as shelves, canteen equipmen machine tools, fork lift truck and over 1,000 items meat suring and testing equipment for many more items. hours; Tuesday, 7th July, 1981 , from 8.00 to 9.45 hours Pednesuay, be arranged by telephone call. Catalogue (RDM)

HORST F. G. ANGERMANN
 IMMOBILIEN, MASCHINEN UND INDUSTRIEANLAGEN 2000 Hamburg 11. Mattentwiete 5
Telefon: 040) $367691-93$. Telex: $02-13303 \cdot 02-15272$

10 OUT OF 10.-
 IT'S ELEKTRIK!

- Whose amplifiers sound audibly superior?
manufacturers international recording studios etc? Which power amplifier modules feature high speed electronic protection, virtually zero TIM, negligible THD, 110dB S/N ratio, and a range of power outputs from 60-300 WRMS?
Which amplifiers are guaranteed unconditionally
stable thermally, electrically and mechanically?
Whose reputation for back-up, service and friendly
advice is second to none?
Who makes amplifiers OEM capable of driving motors Who offers a coms etc?
of any comprable ni-fi kit amplifier at half the
Who also specialise in active amplification?
o Who offers a complementary range of ancillary equipment such as heatsinks, bridge drivers and oroidal power supplies etc?
Who is the leading name in innovative and proven amplification?
A HZ C"IMSDIECletnle
If you would like further details on our complete range send a $7 " \times 10 "$ sae +50 p cheque or PO for ou omprehensive users / application manual to: RIMSON ELEKTRIK, (WW), 9 CLAYMILL ROAD, LEICESTER Telex 34694 CRIMLEK
 \title{
New Profile Amplifiers- Two New Series
}
 \title{
New Profile Amplifiers- Two New Series
}

 I.L.PMOSETS AREIDENTICALIN PERFORMANCETO THE COSTLIEST AMPLIFLERSINTHIS

(Standard O-P Transistors)

Model	Output Power RMS	Distor- tion Typical at 1 KHz	Slew Rate	Rise Time	Signal/Noise Ratio DIN AUDIO	Price \& VAT
нүзо	$\begin{aligned} & 15 W \text { into } \\ & 4-8 \Omega \end{aligned}$	0.015\%	15V/ $/ \mathrm{s}$	$5 \mu \mathrm{~s}$	100dB	$\begin{aligned} & £ 7.29 \\ & +£ 1.09 \end{aligned}$
HY60	$30 W \text { into }$ $4-8 \Omega$	0.015\%	15V/ $/ \mathrm{s}$	$5 \mu \mathrm{~s}$	100dB	$\begin{aligned} & £ 8.33 \\ & +£ 1.25 \end{aligned}$
HY120	$\begin{aligned} & 60 \mathrm{~W} \text { into } \\ & 4-8 \Omega \end{aligned}$	0.01\%	15V/ $/ \mathrm{s}$	$5 \mu \mathrm{~s}$	100dB	$\begin{aligned} & £ 17.48 \\ & +£ 2.62 \\ & \hline \end{aligned}$
HY200	$\begin{aligned} & 120 \mathrm{~W} \text { into } \\ & 4-8 \Omega \end{aligned}$	0.01\%	15V/4s	54 s	100dB	$\begin{aligned} & £ 21.21 \\ & +£ 3.18 \\ & \hline \end{aligned}$
HY400	$240 \mathrm{~W} \text { into }$ 4Ω	0.01\%	15V/us	$5 \mu \mathrm{~s}$	100dB	$\begin{aligned} & £ 31.83 \\ & +£ 4.77 \end{aligned}$

- IISTORTION CONTENT
IS BELOW NOISE LEVEL
$0.001 \% .1 \mathrm{w}$
OUTPUT POWER
Load impedance both models
4R- $\left.\begin{array}{l}\text { Input impedance both models 100K } \Omega \\ \text { IFrequency response both models }\end{array}\right)$ models 500 mv

ISTORTION CONTENT
IS BELOW NOISE LEVEL
i'w out iow
Coad impedance all models $4,2-\infty$ Input impedance all models $100 \mathrm{~K} \Omega$
Input sensitivity all models 500 mV Frequency response all models

$$
15 \mathrm{~Hz}-50 \mathrm{KHz}-3 \mathrm{~dB}
$$

The NEW PROFILE EXTRUSIONS
1.L.P. poower amplifiers achieves many many advañtā for all
Research shows they proviiee optimum thermal des:-
tion and stability
standardisation enables sush to keers our allow easy mouncs mounting;
Surfaces aretitive
Surfaces are matt black, onoedised for prices chighpert theritive.
conductivity. Extrusions vary in size according to module
number.

NO QUIBBLE 5 YEAR GUARANTEE FREEPOST SERVICE

NEW PRE-AMPS
 HY6 (mono) and HY66 (stereo) are new to I.L.P's range of advanced audio modules. Their improved characteristics power-amps bothMOSFET and BIPOLAR, giving you chance to get the best possible reproduction from your equipment. HY6 and HY66 pre-amps are protected against short circuit and wrong polarity. Full assembly instructions are provided. Mounting boards are available as below
 Sizes - HY6 - $45 \times 20 \times 40 \mathrm{~mm}$. HY66 - $90 \times 20 \times 40 \mathrm{~mm}$. Active Tone Control circuits provide $\pm 12 \mathrm{~dB}$ cut and boost. Inputs Sensitivity - Mag. PU. -3 mV : Mic - selectable $1-12 \mathrm{mV}$: All others 100 mV . Tape O/P - 100 mV : Main O/P 500 mV : Frequency response - D.C. to $100 \mathrm{KHz}-3 \mathrm{~dB}$. HY6 mono $£ 6.44+97$ p VAT Connectors included HY66 stereo £12.19+£1.83 VAT Connectors included
 B6 Mounting Board for one HY6 78p + 12 p VAT B66 Mounting Board for one HY66 99p +15 p VAT

- DISTORTION TYPICELLY - LETEST DESIGN HIGH 0.005\% OUALTY CONNXCTORS - S/N RATIO - 90dB (mag. P.U. -68 dB) - ONLY POTS SWITCHES AND PLUGS/SOCKETS NEED ADDING

We want

 to knowWe have always maintained good working relations with our customers, and therein lies a large measure of the company's
success and growth. Now that we are running tur most excit ing programme yet, we would like to have your comments about our current products and any others you would like to
see coming from I.L.P. Send us your letter (with your age job, see coming from I.L.P. Send us your letter with your age, iob,
etc., if you don't mind) to: Customer Licison, I.L.P. Electronics etc., if you don't mind) to: Customer Liaison, I.L.P. Electronics
Ltd., FREEPOST, Roper Close, Canterbury CT2 7EP (No stamp required).

NEEDS ONLY UNREGULATED POWER SUPPLY ± 15 to $\pm 60 \mathrm{v}$
 NEW POWER SUPPLY UNITS
 or the eleven power supply units which compnse our current range, nine have toroidal transformersmade in our own iactory. Thusthese 1.L.Ppowersupply unitsarespace-saving, mo efficientand their better overall design helps enormously when assembly building. All models

 the range are compatible with all I.L.P amps and pre-amps with types to match whatever I.L.PPSU30 $\pm 15 \mathrm{~V}$ at 100 mA to drive up to $12 \times$ HY6 or $6 \times$ HY66 - THE FOLLOWING WILL ALSO DRIVE I:L.P PRE-AMPS PSU36 for use with 1 or 2 HY30's

- ALL THE FOLLOWING USE TOROIDAL TRANSFORMERS

PSU50 for use with 1 or 2 HY60's
PSU60 for use with 1 HY120
PSU65 for use with 1 MOS120
PSU70 for use with 1 or 2 HY120's
PSU75 for use with 1 or 2 MOS120
PSU90 for use with 1 HY200
PSU95 for use with 1 MOS200
PSU180 for use with 1 HY400 or 2 HY200
$84.50+0.68 \mathrm{p}$ VAT
$£ 8.10+£ 1.22$ VAT
$£ 10.94+£ 1.64$ VAT $213.04+£ 1.96$ VAT PSU185 for use with 1 or 2 MOS200
7.DAY DESPATCH ON ALL ORDERS BRITISH DESIGN AND MANUFACTURE
\star Freepost facility

- TO ORDER send cheque or money order payabie to $1 . . \mathrm{P}$ हlectronics

* See also our ad. on page 101

BRITAINS FOREMOST OUALITY MODULE SUPPLIERS

TO: IL.P ELECTRONICS LTD. CANTERBURY CT2 TEP
Please supply
I enclose Cheque \square Postal Orders \square Intermational Money Order \square
Please debit my Access/Barclaycard AccountNo
NAME
ADDRESS ..
Signature

TV TUBE REBUILDING

Faircrest Engineering Ltd. manufacture a comprehensive
range of equiiment for processing all types of picture tubes
 lished or new businesses. We export world-wide and have an
excellent spares service backed by a strong technical team. Full training courses are individually tailored to customers'
requirements. För full details of our service contact Neil Jupp
FAIRCREST ENGINEERING LTD.
Willis Road, Croydon, $\begin{gathered}\text { CRO2 } \\ 01-6841422 / 01-6840246\end{gathered}$
ww-069 FOR FURTHER DETAILS

THE COMPLETE SOLUTION TO STRAIN GAUGE AMPLIFICATION

- COMPLETE WITH BRIDGE SUPPL
- COMPLETE WITH ALL ADJUSTMENTS (SPAN ZERO BRID
- COMPLETE (NO EXTERNAL COMPONENTS NEEDE

W - 052 FOR FURTHER DETAILS

New KONTAKT Sprays

for the Electronics 8 Electrical Industries

KALTRON 60

A new cleaner for Magnetic Recording Units. Kaltron 601
bas an extremely low surface tension thereby enabing the leaning of magnetic sound heads leaving no deposit or
non-flammable. on energised electrical installations and
tit can be used
electronic equipment, e.s. video units, tape recorder
electronit equipment, e.g.
data processing systems etc.

Also NEW

PRINTER 66
also be used for cleaning normal typewrititers.
SCREEN 99
Specially for th
VASELINE SPRAY 701
For use in communications engineering and construction of antennae.
Proved duccessful as corrosion inhibitior for cable clamps, connecting screw
Pres. Proved successtul as corrosion inh ibito for cable clamps, connecting screw
joints etc. Appopication from spray can with capillary tube is clean and simple.
Distribued Sy.

Special $_{81}$ Products Discadily, London, w1v $\mathbf{~ W H L}$ Lid.

WW - 059 FOR FURTHER DETALLS

Digitel
Video Noise Measurement System
 and economical method of messuring vidoo signal to noise ratio on
broadcast or induatrial TV systems.

£700+VAT

- Measures signal to noise ratio down to 65 diss SN
- Field interval SNR measurements are possible with the
- SNR measurement is possible in the presence of sync pulses, some

- Full CCIR weighting filter sets are available

DIGI-TEL ELECTRONICS
ww - 030 FOR FURTHER DETAIL

Sowter Transformers
 With 40 years' experience in the design and manufacture of several hundred thousand tranformers

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE

YOU NAMEIT! WE MAKEIT! OUR RANGE INCLUDES:
Microphone transformers (all types), Microphone transformers (all powers), Column Loudspeaker trans-
Solitter/Combiner transformers, Input and Output
formers up to 300 watts or more. ransformers, Direct Injection transformers for Guitars, Multi-Secondary output transformers, Bridging
transformers, Line transformers, Line transformers to G.P.O. Isolating Test Specification, Tapped impedance matching transformers, Gramophone Pickup transfor-
mers, Audio Mixing Desk transformers (all types) mers, Audio Mixing Desk transformers (all types),
Miniature transformers, Microminiature transformers
for PCB for PCB mounting, Experimental transformers, Ultra low frequency transformers, Ultra linear and other
transformers for Transistor and Valve Amplifiers transformers for Transistor and Valve Amplifiers up to
500 watts, Inductive Loop transformers, Smoothing 500 watts, Inductive Loop transformers, Smoothing
Chokes, filter, Inductors, Amplifier to 100 volt line
transformers firo transformers (from a few watts up to 1,000 watts), 100
volt line transformers to speake We can design for RECORDING QUALITY, STUDIO
QUALITY, HI-FI OUALITY OR P.A. OUALITY. OUF QUALITY, HI-F QUALITY OR PA. QUALITY. OUP LARGE OR SMALL OUANTITIES AND EVEN SINGLY TRANSFORMERS. Many standard types are in stock and normal despatch times are short and sensible.
OUR CLIENTS COVER A LARGE NUMBER OF BROAD. CASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HII-FI ENTHU-
SIASTS, BAND GROUPS AND PUBLIC ADDRESS FIRMS. Export is a speciality and we have overseas clients in the COMMONWEALTH, EEC, USA, MIDDLE Ampleted, enables us to quest quonnatire which, when

E. A. Sowter Ltd.

The Boat Yard, Cullingham Road, Ipswich IP1 2EG, Suffolk, P.O. Box 36 , Ipswich IP1 2EL, England
ww-010 FOR FURTHER DETAILS

LINSLEY HOOD CASSETTE RECORDER 2

LINSLEY-HOOD CASSETTE RECORDER

RECHARGEABLE BATTERIES

PRIVATE \& TRADE ENQUIRIES WELCOME Full range available to replace 1.5 volt dry cells and 9 volt
PP type batteries SAE for lists and prices. $£ 1.45$ for booklet," "Nickel Cadmium Power," plus catalogue.
\star New sealed lead range now available \star

$$
0
$$

SANDWELL PLANT LTD.
Sutton Coldfield, West Midlands, 021-354 9764
WW - 043 FOR FURTHER DETALLS

HART TRIPLE-PURPOSE TEST CASSETTE TC1

WIRELESS WORLD JULY 1981

\qquad

MN.

프ㅁㅜㅜ웅 $\begin{array}{lll}\text { S } \star & & \\ 1.24 & 25-99 & 1 . \\ 1.30 & 1.20 & 1 .\end{array}$ $2114 \mathrm{~L}(450 \mathrm{~ns}$
$2716(+5 \mathrm{~V})$
$4116(200)$

SPECIAL OFFERS | $1-24$ | 25.99 | 100 |
| :--- | :--- | :--- |
| 1.30 | | |
| 3.00 | | |
| 1.20 | 1.10 | |
| 1.30 | 1.20 | 2.50 |

Superbmaior solid LA Project by TEXAS INSTRUMENTSLTP

100

HEREIT IS! THE BRAND NEW

 HAND-HELD DMM

For only $£ 89+$ vat Von more soophiaticieved tho Fluke 8020A

Price $£ 125$

ELECTRO-TECH COMPONENTS LTD. 34 EDGWARE ROAD, LONDON, W.2. TEL: 01-723 5667

Happy Memories

4116	200 ns	$\mathbf{£ 1 . 7 0}$
2114	200 ns	$\mathbf{£ 2 . 9 5}$
2708	450 ns	$\mathbf{£ 3 . 3 5}$
2114	450 ns	$\mathbf{£ 1 . 9 5}$
$\mathbf{2 7 1 6}$	5 volt	$\mathbf{£ 3 . 7 0}$

Soft-sectored mini-discs for PET, TRS-80 etc. Supplied in FREE LIBRARY CASE, £19.95 per 10

Low Profile I.C. Sockets by "Texas"
Pins

Pence | Sockets by |
| :--- |
| 81416182022 |
| 101112161720212840 |

Memory Upgrade Kits for Apple, 2020, TRS-80, etc., from Eus. ${ }^{\text {peease phone. Quantity prices available on }}$, Government and Educational Orders welcome. Trade accounts opened
All prices include VAT. Postage FREE on orders over £15, otherwise add 30p
Access and Barclaycard welcome

HÄPPY MEMORIES, DEPT. W.W.
GLADESTRY, KINGTON
HEREFORDSHIRE HR5 3NY
Tel. (054422) 618

P.\&R. COMPUTER SHOP

EPSON MX-80 80.GPs DOT MATRIX PRINTER WITH SPECIAL NNERFACES. 3982 IBM I/O PRINTERS,
VDUS, ASCII KEYBOARDS, ASR, KSR, TELETYPES,
PAPER TAPE READERS, PAPER TAPE PUNCHES PAPER TTAPE READERS, PAPER TAPE PUNCHES,
SCOPES, TYPEWRITERS, FANS $4^{\prime \prime} 5^{\prime \prime} 6^{\prime \prime}$. POWER SCOPES, TYPEWRITERS, FANS $4^{\prime \prime} 5^{\prime \prime} 6^{\prime \prime}$. POWER
SUPPLES, STORE CORES, TEST EOUIPMENT AND MISCELLANEOUS COMPUTER EQUIPMENT. OPEN: MOND
1 pm .

COME AND LOOK AROUND
SALCOTT MILL, GOLDHANGER ROAD PHONE MALDGE, ESSEX.
wW - 024 FOR FURTHER DETALLS

CLEF electronic MUSIC

GOODS DESPATCHED WITHIN 7 DAYS OF RECEIPT OF ORDER -

* CUSTEMEROR DESIGN ENQUIRIES INVITED. QUANTTTY PRICE LIST AVALLABLE.

Tadress below. NO STMMMP RED OUIRED

- mictrovaur marshall.

 + A MEW SERIES O
P.C.B MOUNTHG
LAMINATED TYPES

ABOUT THE NEW LAMINATES
ILP LuMNaxD

 To: I.L.P. ELECTRONICS LTD. CANTERBURY CT2 TEP Please supply Transformer(s).............. No.(s)....
enclose Cheque \square Postal Orders \square Intermational Money Order \square Debit my Access/Barclaycard Account No
NAME.
ADDRESS ADDRESS
Signature.

BULK EPROM PROGRAMMING

This unit provides simple, reliable programming of up to 8
EPROMS simultaneously. It has been designed for ease of operator use-a a single ' program. key starts the self check - blank check -
progran - verify seauence. program - verify sequence.
Indeenendent blank check \& verify controls are provided along with
mode, pass /fail indicators for each copy socket and a sounder to signal a correct key command \& the end of a programming run,
Any of the 270427082716
(3) rail) Ant
hardware or personality card chill
hanges. hardware or personality card changes.
PRICE $£ 545+$ VAT. Postage paid
BULK EPROM "SToock
ERASING

MODEL UV141 EPROM ERASER
14 EPROM capacity
Fast erase time
Built-rinse $5-50$ minute timer
Convenient slide-tray loading of devices
Safety interlocked to prevent eye and skin damage
Satety interlocked to pre
Rugged construction
MIISE\&EEASE indicators
Price $£ 78+$ VAT postage paid.
MODEL UV140 EPROM ERASER
Similar to Model UV141 but without timer. Price $\mathbf{£ 6 1 . 5 0}+$ VAT
post paid

BULK EPROMS

 $\begin{array}{llllll} & £ 308 \text { (450) } \\ & £ 3.90 & £ 3.50 & £ 3.10 \quad £ 2.90\end{array}$ Postage and Packing is included in all prices. ADD VAT at 15%,
All our EPROMS are manufactured by leading companies and are
fully guaranteed, branded and to full specification. WRITE OR TELEPHONE FOR FURTHER DETAILS OR SE
OFFICIAL COMPANY ORDERS / CHEQUES TO: Overseas customers, please telex or write for quotation and

GP INDUSTRIAL ELECTRONICS LTD.

Unit 6, Burke Road, Totnes Industrial Estate, Totnes, Devon Telephone: Totnes (0803) 863360 sales, 863380 technical

DISTRIBUTORS REQUIRED - EXPORT ENQUIRIES WELCOME
WW - 039 FOR FURTHER DETAILS

The exeinew name in power operational amplifiers
 Apex Microtechnology of Tuscon Arizona, whose products are avallable High voltage-up to 280 volts output swing PA 08 PA 08A - Fet input PA 83 PA 83A - High accuracy Applications
 - High voltage instrumentation eWide supply range $- \pm 15 \mathrm{~V}$ to $\pm 150 \mathrm{~V}$ - Programmable power supplies ©Programmable output current limit ELectrostatic de
 - Test equipment \quad Low bias current
 PEX
 मtech
 Send for full product listings of Apex Microtech's Apex Microtech's exciting product range (PA83 only)
 Ww - 065 FOR FURTHER DETAILS

WIRELESS WORLD JULY 1981
U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

RADIO COMPONENT SPECIALISTS ${ }^{337}$ Whireborse ioai, chorvo

All Mail Orders - Callers
Ample parking space
owroom open Monday-Friday

SERVICE TRADING CO
57 BRIDGMAN ROAD, CHISWICK, LONDON W4 5BB, 01-995 $1560 \begin{aligned} & 9 \text { Little Nowport Street } \\ & \text { ACCOUNT CUSTOMERS MIN. ORDER } £ 10\end{aligned}$
ACCOUNT CUSTOMERS MIN. ORDER £10

 SEND/PHONE FOR EXTENSIVE special offer

 74LS, 6800, 6502, Z80, 6809 CONNECTORS, CRYSTALS, SWITCHES DISK DRIVES, MEMORIES"LOW PRICES"

Barrie Electronics Ltd.
3,THE MINORIES, LONDON EC 3N 1BJ
TELEPHONE: O1-488 3316/8

MICRO TIMES
9 Mill Street, Bideford, North Devon, EX39 2JR Telephone Bideford (023-72) 79798 Dept. WWI

dill
 Boards are glassfibre, roller-tinned and drilled. Prices include Arrmail add 20%, Europe
M. R. SAGIN, 23 KEYES ROAD, LONDON, N.W. 2

PRINTED CIRCUITS

FOR WIRELESS WORLD PROJECTS

ch-June 19	
Semater -June $1978-1 \mathrm{ds}$. .	
Soreocto	\%ois
ode transevere-Ocioiob	
,	
-April	
aly	
ded	
Uencreounters-March 198	
Boards are glassfibre, roller-tinned and drilled. Prices include \checkmark A.T and U. K postage	
Arrmail add 20\%, Europe add 10\%, Insurance 10\%.	
M. R. SAGIN 23 KEYES ROAD, LONDON,	

40 BARTHOLOMEW STREET, NEWBURY, BERKS.
(0635) 30505. PLEASE ADD V.A.T., P. \& P. 30 p
BARCLAYCARD, ACCESS \& OFFICIAL ORDERS

Toroidal Power Iransformers

WIRELESS WORLD JULY 1981

	LOW VOLTAGE
POWER DRILLS	

CHILTERN ELECTRONICS
VIDEO MONITOR BARGAIN

 ASCII KEYBOARDS
 TELETYPES

${ }_{\text {K5R }}^{\text {K50 }}$ Model 33 E65. ASR Model 33 E 120 with pedestal.

DEC PDP8 COMPUTERS
 ICL TERMIPRINTERS
 CENTRONICS LINE PRINTERS The heary duty professional line priniters, $165 \mathrm{ch} / \mathrm{sec}$. Only $£ 250$.

DISKS \& MAGTAPES

 WW-066 FOR FURTHER DETAILS

-

Children know more about computers than their parents. True or False?

Well, true enough for Practical Computing to propose a twinning scheme for schools and businesses, bringing pupil brainpower to bear on business problems. Read all about it in the July issue:

Also in this issue of Practical Computing:
Reviews of Explorer 85, a modular system which can configuration. And Gemini - a large capaci
large capacity business
Prokit - a package of subroutines to ease data entry on
the Pet.

How a freight forwarding company started with an Apple but ended up with an IBM mini.
Business software - first of a four-part series on how o write your own.
Education. How to write a Pet program to provide a framework for multiple choice tests.

All this plus the usual Apple, Tandy, Pet and ZX8O advice pages in the July issue of Practical Computing,
Price 80p. At your newsagent or complete the coupon:

Please add 50 pence for carriage Please add 50 pence for carriage
Alease send s.a.e. for price list.

STRUTT LTD

ELECTRONIC COMPONENT DISTRIBUTORS
3c BARLEY MARKET STREET, TAVISTOCK DEVON, ENGLAND PL'19 OJF
Tel. Tavistock (0822) 5439/5548. Telex: 45263

WW-038 FOR FURTHER DETAILS

BECOME AN INSTANT MUSICIAN
 NO EXPERIENCE NECESSARY

As featured on "TOMORROW'S WORLD"

CASIO VL-TONE (VL-1)

ONLY $£ 35.95$

 100 notes. Recall the notes in seauence with the One K
tempo and duration of each keystroke to create a melody.

 VL-1.29-note synthesisis records and plays back MANUAL or ONE KEY playing The octave shift expands the range to a amost 5 octaves.
Proset sounds: Piano, Violin, Flute, Guitar. Fantasy and ADSR

TEMTPUS Dept. WW, Beaumont Centre, 164 .1.167 East Raad

HASBROOK TRADING POSTAL ADDRES: P.O. BOX 25,
CLEMENTI CENTRAL, SINGAPORE 9112
Lowest Prices - Prompt Delivery - Quality Products

WIRELESS WORLD JULY 1981

STABILISED POWER SUPPLIES

FARNELL A15: 210/240V IP. Dual Op. 12-17v per rail at
100 mA . Remote sensing, current limit protection. 1164×130 100 mA . Remote sensing, cu
$\times 38 \mathrm{~mm}$), with manual. $\mathbf{2} 12$.
FARNELL $\overline{7} / 3$ SCC $120 / 240 \mathrm{~V}$ IP. Adjustable current limit. Re-
mote sensing. $1888 \times 96 \times 93 \mathrm{~mm}$). Two versions available: mote sensing. (188×96×93mm). Two versions available.
15 V at 2 A or 30 V at $1 \mathrm{~A} . \mathrm{E} 15 \mathrm{ea}$. COUTANT OA2: Op. amp, psu, $120 / 240 \mathrm{~V}$ IP. Dual Op. $12-15 \mathrm{v}$
at 100 mA . $(138 \times 80 \times 45 \mathrm{~mm})$. $£ 12$ ea. or 2 for $£ 22$. BRANDENBURG Photomultiplier PSU. 19in. rack mounting. $374,374 \mathrm{R} ~ 300 \mathrm{~V}-1 \mathrm{KV}$ at 5 mA .
$75500 \mathrm{~V}-1 K 5 \mathrm{~V}$ at 6 mA .
376660 V - 1 K 6 V at 10 mA .
Model 374 R has reversible polarity op. All others have negative polarity op.
All models $£ 40$.
OUTANT
COUTANT ESM3: $105 / 115 / 220 / 240 \mathrm{~V}$ IP. Four separate ops: protection and remote sensing.
± 12 to $\pm 15 \mathrm{~V}$ at 500 mA stabilised
2 or 24 V Unstabili
12 or 24 V unstabilised. $1125 \times 80 \times 275 \mathrm{~mm}$). $£ 30$.
SPECIAL OFFER. 10 MFD 500 V ECC 20p ea., $10,000 \mathrm{MFD} 16 \mathrm{v}$
Mullard 35 p ea., 3,300 MFD 40 v Muliard 35 p ea. $10 \mathrm{HF} / 63 \mathrm{v}$ MIMA polyester $10 \% 50$ p ea. Large quantities available.
ELECTROLYTIC CAPACITORS. Very large stock holding
Mostly ITTEN1212m EN1235 types. Please send for our electrolytic list, e.g.: $220 / 50 \mathrm{VA}, 2200 / 25 \mathrm{R}$,
$470 / 25 \mathrm{R}, 4700 / 25 \mathrm{~A}, 470 / 50 \mathrm{~A}, 2200 / 100 \mathrm{CAN}$.
CAPACITORS-DISC CERAMIC
mostly ITT. Many high-voltage 210p 8 KV . $1 \mathrm{n} 1 \mathrm{KV}, 2 \mathrm{n} 22 \mathrm{KV}$, 10 n 2 KV .
$220 \mathrm{p} 1 \mathrm{KV}, 1 \mathrm{n5} 3 \mathrm{KV}, 4 \mathrm{n} 71 \mathrm{~K} 5 \mathrm{~V}$.
Please send for our ceramic capacitor lists.
PYE HEAD CLEANING CASSExed, 50p ea
CASSETTE DECKS: With stereo heads, mechanically complete, but with no
electronics. Smart black
modern finish.
f5.00 modern finish.
We have VERY LARGE $0.1 \mu / 16 \mathrm{~V}$ disc ceramic by avale
Pitc Pitch 5 mm . Price $£$ £20/f 1,000 .
Brand new and boxed. PIHER PRESETS Very large stocks, PT10,
PT15 enclosed types.
Please send for our pres
values $100 \mathrm{R}-5 \mathrm{M}$

HEAVY DUTY
KEYSWITCHES
2P 12 AE 60 V AC
8 P 10 A 380 AC
$10 P 12 \mathrm{~A} 600 \mathrm{ACC}$
$49 \mathrm{~mm} \square$ Fascia.
ROTARY POTS
Good range stocked. Please
phone your requirements. phone your requirements.
Large stocks of the fol$\begin{array}{ll}\text { lowing: } \\ 100 K L \text { _ push switch } & \text { 30p } \\ 22 K L O G+\text { switch } & 30 p\end{array}$ 22 K LIGG
2 KLIN CANNON $15 w$ sockets, ${ }^{30 p}$ type or Souvrian/MMCMurdo
Daiss: 60 e ea. Also Cannon

WELWYN STRAIN GAUGE (Precision micro-mea-
surements). Romulus Miche surements). Romulus Mich
gan type MA-09-500B4-350
Our price $£ 1.25$ ea. List pric Our price $£ 1.25$ ea. List price
£3.85. Large quantities avail able. 1 Surn Ceremet Trimpot
$3 / 150 \mathrm{~S}$.
100 K .1 off price, 20p.. By Beckman \& A.B.
REDPOINT HEATSINK, T REDPONT HEATSINK, Type
TV4 5 FD ea. off price.
Discount on ouantity. Discount on quantity.
We have the following We

 (LH) 1701, 41c, 20p; Burrows
Connector (RH) 1201 4LC
25p. Large quantities avail Mble. ${ }^{\text {MTWAY P.C. CONNECTOR }}$
 ITT TEMPKIT Electronic ther
mostat ZBII. 5669 Brand new. ${ }^{\text {E4 ea. }}$ 4-WAY DPDT AND 5 -WAY DPDT DIL SWITCHES, by
ERG Components and CTS
Gold contacts $£ 1$ 1 Gold contacts $£ 1$ ea. Brand
new and boxed. newzZERS, 6 v and 12 v , 50 p Wire ended neons £20/f1,000.
SPECR MiAL OFFR. Mini-toggle
switch by CE. \& K. K., 3 Pc/o.
Long dolly or short, 50 p ea.
,

By Micro Consultants Ltd. 50Ω cable drive op. Linearity
0.25%, max. 0.125% typ. Setting time: 2 V step 70 ns typ. . MV step 50 nS colour television transme: 2 V step 70 ns typ. gain 0.5% diff. phase shift 0.5° types rad 802 and MC2208/8.
TRANSFORMER

$5-0-5 \mathrm{~V} 400 \mathrm{~mA}$ $6-0.6 \mathrm{~V} 10 \mathrm{~mA}$ 8

$\substack{6-0.8 V \\ 9.0 .9 V \\ 900 \\ \hline \\ \hline \\ \hline \\ \hline}$

$9-0.92 A$
$12 \mathrm{~V} 2 \mathrm{~A}, 22 \mathrm{~V} 1 \mathrm{~A}^{\star}$
120 ma
12 V 130 mA
12 V 1 A 5
12 V 14 A
$0-12,0-1296 \mathrm{~V}$
15 V
15100 mA
17 V 300 mA
$20-0-20$
20
$22.0-2250 \mathrm{~mA}$
24 V
100 mA
24 V 100 mA
240250 mA
$30-250-2-25-30,1 \mathrm{~A} 6$
$0-2-4-6-8-105 \mathrm{~A}$
 AUTO TRANSFORMER by
Gardners. Part No. SA2 ${ }^{2}$,
2K watt. New and boxed. $£ 25$
ea.
RESIS
insto
RESISTORS: Over 2 million CARBON FILM $1 / 4 \mathrm{~W} 5 \%$ E12 range $1 \mathrm{RO}-12 \mathrm{M}$.
2 p ea. $£ 1 / 100, \mathrm{E} .50 / 1,000$. METAL OXIDE/FILM: MOS values in E24 range, $1 / 4-2 W 5$, 2or 1%.A few values in 0.1%
tolerance available.
WIRE WOUND: ORI-100K 3 200W. A selection of mains droppers available. Good
selection of metal clad high selection of
power types.
ROTARY SWITCHES
Over 30 different types avail-
able.
MINIATURE LATCHING
SWITCHES, 3 Pc/o by Micro
(A division) of Honerwell
Ltd., 3 amp 250 va a.c. PartNo.
Ltd., 3011, , 1 ea.Miniature mo.
8NO. mentary 1 Pc $/$ os switch by
mi
Micro, 3 amp 250 A.C. Part
Micro, 3 amp 250 v A.C. Part
No. 8 N 1021 .
FND 500, 7 segment $\begin{aligned} & \text { LED } \\ & \text { display. }\end{aligned}{ }^{\text {ea }}$
SPECIAL OFFER: Filmet
SC65 $1 \mathrm{M} \Omega$
resistors
CERMET PRESETS 15p ea. MINATURE AB16 POTS
PCB mounting 16 mm . PCB mounting 16 mm .
100 KLOGDG 100 K LOG DG
220 KOG DG
100 KINSG
10A 250 V AC ILLUMINATED Red, DP ST $26 \times 30 \mathrm{~mm}$ rect.
ROCKR SWITCH
St Snap-in type 75p
16A 250V AC ILLUMINATED
ROCKER SWITCH
(Amber). $14 \times 30 \mathrm{~mm}$ rectang-
ular snap-in type. SPST 30 p
AB7 $134 \times 64 \times 38 \mathrm{~mm}$ BES
 70 p
70 p
70 p
70 p
85 p
70 p AB1276x51 $\times 25 \mathrm{~mm}$ AB13 $152 \times 102 \times 51 \mathrm{~mm}$
ABB4 $178 \times 1727 \times 5 \mathrm{~mm}$

AB15 $203 \times 15 \times 7 \mathrm{~mm}$ | $£ 1.00$ |
| :--- |
| $£ 1.20$ |
| $£ 1.55$ |
| |$A B 1$

$A B 1$
$A B 1$
АА
RB1 $152 \times 114 \times 64 \mathrm{~mm}$ BOX$75 \times 50 \times 25 \mathrm{~mm}$
$80 \times 60 \times 40 \mathrm{~mm}$

\section*{| $75 \times 50 \times 2 \mathrm{~mm}$ |
| :--- |
| $80 \times 6 \times 4 \mathrm{~mm}$ |
| $90 \times 70 \times 40 \mathrm{~mm}$ |}

$90 \times 70 \times 40 \mathrm{~mm}$
$115 \times 75 \times 30 \mathrm{~mm}$
$110 \times 9 \times 0 \times 45 \mathrm{~mm}$
$110 \times 99 \times 45 \mathrm{~mm}$
$170 \times 100 \times 50 \mathrm{~mm}$
$200 \times 120 \times 80 \mathrm{~mm}$
$\mathbf{f 1 . 6 5}$
$\mathbf{f 3} .55$
LICON ILLUMINATED ${ }^{01-800}$ SWUTCHES Rectangular Snap-in $\begin{array}{lr}\text { Series. } & \begin{array}{ll}\text { 2PCO Latching } \\ \text { 2PCO } & \text { Momentary } \\ & \mathbf{£ 1 . 5 0} \\ \mathbf{£ 1 . 5 0}\end{array}\end{array}$
 Lenses available in red or
white only.
MINIATURE PUSH-BUTTON SWITCHES
PTM 20p, PTB 25p, PT M/B H0D.
HEAVY DUTY ROTARY $9 P 3 W 25 A 500 \mathrm{~V}$ AC $£ 3.00$
 STEREO RECORD/REPLAY
CASSETTE HEADS
£1.00 WIREWOUND POTS
10R-100K by A.B. COlv 10R-100K by A.B. Colvern,
etc. $11 / 2 \mathrm{~W} 40 \mathrm{p}, 3 \mathrm{~W} 60 \mathrm{p}, 5 \mathrm{~W}$
80 p. TRIMPOTS 10R-500K TRIMPOTS $10 / 2$ turn. $11 / \mathrm{in}$.

or $3 / 4 \mathrm{in}$. rectangular 60 ea ea. JEAN RENAULD SWITCH | Many types available, e.g.: | |
| :--- | :--- |
| $4 \times 2 \mathrm{P}$ | |
| $6 \times 2 \mathrm{PCO}$ | 60 p |
| $5 \times 2 \mathrm{PCO}+2 \times 4$ PCO | 70 p | $6 \times 2 \mathrm{PCO}$

5×2 PCO $+2 \times 4$ PCO
VU METERS $40 \times 30 \times 23 \mathrm{~mm}$ deep.
White/red scale on black White/red scale on black
background. Brand new,
60 e ea.

This advertisement is mainly of our excess stock holding. We also have excellent stocks of semiconductors, hardware, cables,
etc, etc. For further details send for our lists and retail price catalogue, phone or visit our shop. All prices are exclusive of VAT etc, etc. For further details send for our lists and retail price catalogue, phone or visit our shop. All prices are exclusive of
(and P\&P). Minimum Mail Order $£ 5+$ P\& + VAT. Government departments, schools, colleges, trade and export welcome.

It's easy to complain about advertisements.

MiEASURE UTTO WOUR NEEDS WHTH GROTEGE

To obtain further details of any of Editorial or Advertisement of this issue, please complete one or more of the attached cards or more of the attached cards
entering the reference number(s) entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.
Pléase Use Capital Letters
If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.
overseas subscription AGENTS

 vorus: : Goneral Press

Denmerksia Dansk
Bladistitiuution

 Finlınn: Ravekikifi or,

 roocc: Hollonic
 Hoilleydi: Gan Ditimern

 Mansinn Ext Modeme
Cama Rood, Bombory Iran: A.D.A. 1.151 Khial
Soraza, Thenian

Postage will be

paid by Licensee

Do not affix Postage Stamps if posted in
Gt Britain. Channel Islands. N reland Islands, N Ireland or the Isle of Man

BUSINESS REPLY SERVICE

Licence No 12045
WIRELESS WORLD
Reader Enquiry Service
429 Brighton Road
Surrey CR2 9PS

Enquiry Service for Professional Readers	WIRELESS WORLD Wireless World, July 1981 WW 167		
WW.... WW.... WW	Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.		
Ww.... Ww ww			
ww.... ww.... ww.	Name		
WW.... WW ww	Name of Company		
ww.... ww.... ww			
ww.... ww.... ww.	Address		
ww ww... ww			
ww. ... ww.... ww	Telephone Number		
WW WW.... ww			
ww ww.... ww	publishers USE ONLY	A/E	
ww.... ww.... ww	Position in Company		
ww ww ww.			
ww.... ww.... ww.	Nature of Company/Business		
Ww.... ww.... ww.	No. of emnloyees at this establishment		
ww.... ww.... ww	I wish to subscribe to Wireless World \square		
WW.... WW ... WW	VALID FOR SIX MONTHS ONLY		

Wireless World: Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager,
IPC Business Press,
Oakfield House, Perrymount Road,
Haywards Heath, Sussex RH16 3DH,
England

Wireless World Subscription Order Form Wireless World, July 1981 WW 167
UK subscription rates USA \& Canada subscription rates

1 year: $£ 10.00$ 1 year: $\$ 33.80$
Overseas 1 year: $£ 13.00$
Please enter my subscription to Wireless World for 1 year

A dual trace 10 MHz high sensitivity oscilloscope At a price of $£ 240.00+$ VAT. incorporating all the latest high technology developments to bring you all these outstanding features as standard.

- $10 \mathrm{~cm} \times 8 \mathrm{~cm}$ display.
- 2 mV sensitivity on both channels.
- Add and invert facility
- Probe compensation.
- Push button X-Y.
- Trace locate.
- 10MHZ (-3dB) over full display.

Complete with probes.

Ensures British leadership in the low cost high performance oscilloscope market. Distributors required in certain countries

COPEX

Pixmore Avenue, Letchworth. Herts SGG IJ IJ. Tel. Til: (04626) 72771 F. mevers

IWish to pay by Barclaycard/Tust Card. Please charge to my account.
My Barclaycard/Trust Card No. is
 ww - 028 FOR FURTHER DETALLS

AMATTER OF LIFE OR DEATH

When an accident occurs involving severe electric shock, people on the spot may be suffering from a kind of shock themselves. The realisation that one has literally only seconds to
save a life can itself be momentarily paralysing. That's why Electrical Review has completely re-styled its Electrical Shock Chart. The new chart, prepared in consultation with St. John's
Ambulance Brigade, highlights the main points
in red, and explains and illustrates the actions to be taken so clearly that they can be grasped instantaneously even in a crisis. It also includes vital instruction on what to do if the casualty
does not respond to artificial respiration-with a section on external heart compression. Action this second could save a life. Post this coupon NOW

VIVID RED AND BLACK. PLASTIC,CARD OR PAPER.
SIZE 19 in $\times 131 / 2 \mathrm{in}(474 \mathrm{~mm} \times 346 \mathrm{~mm})$

WIRELESS WORLD JULY 1981

P. F. RALFE ELECTRONICS

10 CHAPEL STREET, LONDON, NWi

RANK KALEE 1742 Wow \& Flutter Meter.
AIRMEC 314 A Voltmeter. 300 mV ((FSD)-300
 DERRITRON 1 KW Power Amplifier with control equipment
for ivaration testing , tet.
HEWLETT-ACKARD 8551 /851B
 HEWLETT-PACKARD 331 D Distortion Meter
RADOMETER Distotion Meter BKF6 $£ 125$.
\qquad

OSCILLOSCOPE SALE ADVANCE OS250. Dual Beam 10MHz £185 HEWLETT-PACKARD 1707A. 75MHz $£ 450$. TELEQUIPMENT D75. TELEQUIPMENT DM64 Storage scope. DYNAMCO D7100. HENEC-PACKARD 122A SB. Audio. AIRMEC 279.4 Beam Display Scope. TEKTRONIX 581 A . 545 A \& B, $544,661,515 \mathrm{~A}$.
NOTICE. All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessary. It is sold in first-class operational condition and most items carry our three months' guarantee

DC POWER

> SPECIAL PURCHASE

LAMBDA POWER SUPPLIES

 MODULATION METERS

	ROTRON INSTRUMENT COOLING FANS Supplied in excellent condition, fully tested: $115 \mathrm{~V}, 4.5 \times 4.5 \times 1 . \mathbf{5}^{\prime \prime}$ £4.50. 230 V £5. $115 \mathrm{~V}, 3 \times 3 \times 1.5^{\prime \prime} \mathrm{£} 4+$ postage e. 35 p .
${ }_{6} \mathrm{CT} 212$ RF Signal Generators. $85 \mathrm{KHz}-32 \mathrm{MHz}$	
	BELL \& HOWELL WICROFICHE VIEWERS Type SR5. tion. $£ 50$.
	DIGITAL WULTI-MIETERS E FOREST ELECTRONICS TYPE MM 200 DC 0.1 KV . ACV V. $700 \mathrm{DC} 1.0-1 \mathrm{~A} . \mathrm{AC} 1.0-1 \mathrm{AA}$. Each in 4 ranges. Resistance $0-19.99$ Mohms. ranges. LED Display 1999 . stand new. special reduced price of E39, INCLUDING VAT \& P.P.

Who's Who and What's What

 in the Electrical IndustryFamous for its total coverage, detail and accuracy, the
ELECTRICITY SUPPLY HANDBOOK usually sells out fast - so ensure your copy and post the coupon below, today!

- Over 2,000 names and locations of executive personnel in the Electricity Council, C.E.G.B., Area Boards and other organisations.
- Major authorities, government department associated with the electrical industry.
- U.K: power stations, Area Board statistics electricity tariffs, electrical associations.
- Pull out map of C.E.G.B. Regions, power stations and transmission lines.

Bound in maps of Area Boards.

To: General Sales Department, Room 205, Quadrant
House, The Quadrant, Sutton, Surrey, SM2 5AS.
Please send me...............copy/ies of ELECTRICITY
SUPPLY HANDBOOK 1981
Name
.
Address
mpany reaistered in England No. 677128. Req office ,

When an accident occurs
electric shock, people on the suffering from a kind of sho save a life can itself be ma That's why Electris chart, prepared in cal Ambulance Brigad

IL ABOUT IT - all the latest on home

entertainment equipment and ideas in . . .

HI FI YEARBOOK AND HOME ENTERTAINMENT 1981

Published again in November, this new 1981 edition in larger magazine size means more comprehensive coverage of the whole range of home entertainment equipment, from aerials to headphones, from microphones to video recorders and from radios to electronic organs. plus details of stockists, Hi Fi Yearbook and Home Entertainment 1981 , essential reading for enthusiasts and buffs.
Available from leading newsagents and bookshops from 1st November 1980. Price $£ 3.00$.

If you have difficulty in obtaining your copy order direct from the

ORDER FORM

To: General Sales Manager, Room 205, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS. Please send me \qquad copy/copies of the Hi Fi Carbook and Home Entertainment 1981 @ $£ 3.50$ including postage and packing. Cheque/postal order
should be made payable to IPC Business Press Ltd

STABILISED POWER SUPPLIES

FARNELL A15: 210/240V IP. Dual Op. 12-17v per rail at

FARNELL $7 / 3 S C$: $120 / 240 \mathrm{~V}$ IP. Adjustable current limit. Remote sensing. (1188 $\times 96 \times 93 \mathrm{~mm})$. Two versions available:
15 V at 2 A or $30 V$ at 1 A .15 e . 15 V at 2 A or 30 V at 1 A . $£ 15$ ea.
COUTANT OA2: Op. amp, psu, $120 / 240 \mathrm{~V}$ IP. Dual Op. $12-15 \mathrm{v}$
at 100 mA . ($138 \times 80 \times 45 \mathrm{~mm}$). E 12 ea. or 2 for E 22 . BRANDENBURG Photomultiplier PSU. 19in. rack mounting. Metered, current limit protection
$374,374 \mathrm{R} ~$
$300 \mathrm{~V}-1 \mathrm{KV}$ at 5 mA .
$375500 \mathrm{~V}-1 \mathrm{KV} 5 \mathrm{~V}$ at mA .
$37666 \mathrm{~V}-1 \mathrm{~K} 6 \mathrm{~V}$ a 10 mA
$376660 \mathrm{~V}-1 \mathrm{~K} 6 \mathrm{~V}$ at 10 mA .
Model 374 R has reversible polarity op. All others have negative polarity op.
All models $£ 40$.
All models $£ 40$.
Some photo multiplier tubes available
COUTANT ESM3: $105 / 115 / 220 / 240 \mathrm{~V}$ IP. Four separate ops: 5 V at 3 A stabilised with current limit, overvoltage crowbar protection and remote sensing.
± 12 to $\pm 15 \mathrm{~V}$ at 500 mA stabilised
12 or 24 V unstabilised. ($125 \times 80 \times 275 \mathrm{~mm}$). $£ 30$.
SPECIAL OFFER. 10 MFD 500 V ECC 20 p ea., $10,000 \mathrm{MFD} 16 \mathrm{~V}$
Mullard 35 p ea., $3,300 \mathrm{MFD} 40 \mathrm{~V}$ Mullard. 35 p ea. $10 \mathrm{FF} / 63 \mathrm{v}$ Mullard 35p ea., 3,300 MFD 40 V Mullard '35p ea. 10,
MIMA polyester $10 \% 50$ ea. Large quantities available.
ELECTROLYTIC CAPACITORS. Very large stock hold
ELECTROLYTIC CAPACITORS. Very large stock holding.
Mostly 1 TTEN1212mEN1235types. Pleases send for our electrolytict list, e.g.: $220 / 50 \mathrm{VA}, 2200 / 25 \mathrm{R}$,
$470 / 25 \mathrm{R}, 4700 / 25 \mathrm{~A}, 470 / 50 \mathrm{~A}, 2200 / 100 \mathrm{CAN}$. $470 / 25 R, 4700 / 25 A, 47 / 50 \mathrm{~A}, 22$
CAPACITORS-DISC CERAMIC
Over 2 million now in stock, mostly ITT. Many high-voltage

$220 \mathrm{p} 1 \mathrm{KV}, 1 \mathrm{n} 5 \mathrm{KVV}, 4 \mathrm{n} 1 \mathrm{KJV}$.
Please send for our ceramic capacitor lists.

PYE HEAD CLEANING CAS-
SETTES
Brand new or boxed, 50p ea.
CASSETTE DECKS: With stereo heads, mechanically complete,
electronic. Smart black
modern finish.
E5.00 We have VERY LARGE $0.1 \mu / 16 \mathrm{v}$ disc ceramic by 17 T . Pitch 5 mm . Price $£ 20 / £ 1,000$.
Brand new and boxed PIHER PRESETS Very large stocks, PT10,
PT15 enclosed types. Please PT15 enclosed types. Please
send for our preset list. Most
values 000 - 5 M

HEAVY DUTY
KEYSWITCHES
 10P 12 A GOOVVAC
49mm
ROTARY POTS
Good range stocked. Please
phone your requirements.
Large stocks of the fol-
 ${ }_{2}^{22 K 2 L O G}$ CANNON 15 w sockets, D Daiss 60p ea. Also Canno

WELWYN STRAIN GAUGE
(Precision micro-mea Purements). Romulu-Miche-
san type MA-09-500B4-350 gan type MA-09-500B4-350.
Our price $£ 1.25$ ea. List price ${ }^{\ddagger}$ €3.85. Large quantities availabie. Lurn Ceremet Trimpot
$3 / 1$ S Then
$100 \mathrm{~K} \pi .1$ off price, 20p. By Beckmant
REDPOINT HEATSINK, Type TV4 15p ea. 1 off price. Discount and
We have the following Welwyn. 1% Resistors available,
$2 \mathrm{~K}, 3 \mathrm{~K}, 3 \mathrm{~K}, 20 \mathrm{~K}, 30 \mathrm{~K}, 1 \mathrm{Meg}$. $2 \mathrm{~K}, 3 \mathrm{~K}, 10 \mathrm{~K}, 2 \mathrm{KY}$, 30K, 1 Meg.
Price 25p ea. Type 4802 . BURROWS CONNECTOR
(LH) 1701, 41c. 20p Burrows Connector (RH) 1201, 4LC 25p. Large quantities avail-
able. METWAY P.C. CONNECTOR,
3-way type P95/3DS, 10p ea. 3-way type P95/3DS, 10p ea.
ITW TMPIT Electronic ther-
mostat ZBII.5669. Brand new. E4 ea. 4-WAY DPDT AND 5-WAY
DPDT DIL SWITCHES, bY ERG Components and CTSS.
Gold contacts $£ 1$ ea. Brand Gold contacts
new and boxed. BUZZERS, 6 V and $12 \mathrm{v}, 50 \mathrm{p}$
eaire
WIRENDED NEONS WIRE ENDED NEONS
E20/f1,000. switch by C. \& K., 3 Pcl/o.
Long dolly or short, 50 pea.

D TO A CONVERTERS

By Micro Consultants Ltd. 50Ω cable drive op. Linearity
0.25%, max. 0.125% typ. Settling time: 2 V step 70 nS typ.
 2MV step 50 DS colour television transmistion standard. Ditf.
gain 0.55% diff. phase shift 0.5° types rad 802 and MC2208/8.

JUST IN!

SEMICONDUCTORS, BRAND NEW AND BOXED ... TEXAS FAIRCHLD, SIGNETICS, NATIONAL, MOTOROLA, FER
RANTI SG'S MULLARD, OVER A MILLION, AT PRICES RANTI, SGS, MULLARD,
YOU'VE NEVER SEEN BEFORE

> INTEGRATED CIRCUITS

Type	Stock	Each	Type	Stock	Each
7401	12,400				
7402	4,400	. 10	${ }^{\text {74LSLS138 }}$	-13,900	$\begin{array}{r}36 \\ 34 \\ \hline\end{array}$
7405	5,400	. 10	74.	4,800	. 68
7420	1,200 4,500	${ }^{20}$	74LS192	29,200	50
7425	4,500	20	$7{ }^{1} 19$	6,650	
7475	1,500	. 25	74583		
7475	10,000	. 25	74.15251	3,600	65
7486	6,200	1.55	744S273	10,000	. 75
7489 74123	7,200	1.55	744S290	40,300	45
74125	2,000	26	74LS293	35,000	45
74154	1,900	. 60	74L5390	2,100	65
75452	19,700	40	UA79	-18,4	25
74LS00	39,600	. 10	*TMSA	9,60	
74LS01	11,200	. 10	*MS1000	9,555	1.00
74LS02		. 10	TMS4036	12,400	
74LS10	14,500	. 20	MC3491	-12,000	
74LS30	53,600	. 12	40085BPC	23,000	POA
74LS73	18,600	20			
74LS75	4,750	25	* 4-bit Com	parator	
		TRANSISTORS			
Type	Stock	Each	Type	Stock	Each
2N1306	10,400	POA	${ }_{\text {BFR86 }}$	248,400	A
2N3055	-12,500				
FRB876	7.400	POA	BCY70	51,800	OA
FRB877	17,600	POA	ZTX342K	149,000	8
R107	7,350	POA	ZTX542K	128,000	08

YES, IT'S TRUE!... AND with do-it-yourself DISCOUNTS
PER ITEM. 100 up, 10%; 1000 up, 25%; 10,000 or more, PER TTEM: 10
$\star \star \star$ Before you grab calculator and chequebook, please
note: AT THESE PRICES, MINIMUM ORDER ON SEMICS IS note: AT THESE PRICES, M.
$£ 10 \ldots$ plus p. \& p. and V.A.T.
$\begin{array}{ll}\text { SPECIAL } & \text { OFFER: Filmet } \\ \text { SC65 } \\ \text { 1M } & 0.1 \% \text { metal film }\end{array}$ $\underset{\text { resistors }}{ }{ }^{2}$ CERMETPRESETS 15p ea. MINATURE AB 16 POTS
PCB mounting 16 mm 100 KLOGDG
220 KLOGDG
220 KLOGDG
100 KINSG
10A 250V AC ILLUMINATED
10A 250 V AC ILLUMINAT
ROCKR SWITCH

Snap-in type
16A 250 V AC ILLUMINATED
ROCKER SWITCH
(Amber). $14 \times 30 \mathrm{~mm}$ rectang-
ular snap-in type. SPST 30 p
WIREWOUND POTS
10R-100W by A.B., Colvern,
etc. $11 / 2 \mathrm{~W} 40 \mathrm{p}, 3 \mathrm{~W} 60 \mathrm{p}, 5 \mathrm{~W}$
30p.

10R-500K $10 / 20$ turn. $11 /$ in. or 3 3in. rectangular 60 p ea
JEAN RENAULD SWITCH JEAN RENAULD SWITCH
 $4 \times 2 \mathrm{~L}$
$6 \times 2 \mathrm{PCO}$
$5 \times 2 \mathrm{PCO}$ $5 \times 2 \mathrm{PCO}+2 \times 4 \mathrm{PCO}$ $40 \times 30 \times 23 \mathrm{~mm}$ White= red scate on bep
background. Brand new.

This advertisement is mainly of our excess stock holding. We also have excellent stocks of semiconductors, hardware, cables, etc, etc. For further detaiils send for ourl lists and retail price catalogue, phone or visit our shop. All prices are exclusive of VA
(and P\&P). Minimum Mail Order $£ 5+$ P\&P + VAT. Government departments, schools, colleges, trade and export welcome.

READ ALL ABOUT IT - all the latest on home entertainment equipment and ideas in . . .
 HI FI YEARBOOK AND HOME ENTERTAINMENT 1981

Published again in November, this new 1981 edition in larger magazine size means more comprehensive coverage of the whole range of home entertainment equipment, from aerials to headphones, from microphone to video recorders and from radios to electronic organs. Backed by authoritative articles on developments in the world of Hi Fi , plus details of stockists, Hi Fi Yearbook and Home Entertainment 1981 is essential reading for enthusiasts and buffs.
Available from leading newsagents and bookshops from 1st November 1980. Price $£ 3.00$.

If you have difficulty in obtaining your copy order direct from the

ORDER FORM

To: General Sales Manager, Room 205, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS
lease send me
copy/copies of the $\mathrm{Hi} \mathrm{Fi}_{\mathrm{i}}$ Yearbook and Home Entertainment $1981 @ £ 3.50$ including postage and packing. Cheque/postal orde
should be made payable to IPC Business Press Itd

STABILISED POWER SUPPLIES
FARNELL A15: $210 / 240 \mathrm{~V}$ IP. Dual Op. 12-17v per rail at
100 mA . Remote sensing, current limit protection. $(164 \times 130$ FARNELL $7 / 3 S C$: $120 / 240$ IP. Adjustable current limit. Remote sensing. ($188 \times 96 \times 93 \mathrm{~mm}$). Two versions available:
15 V at 2 A or 30 Vat 1 A 15 15 V at 2 A or 30 V at 1 A . $£ 15$ ea COUTANT OA2: Op. amp, psu, $120 / 240 \mathrm{~V}$ IP. Dual Op. $12-15 \mathrm{v}$
at 100 mA . $1138 \times 80 \times 45 \mathrm{~mm}) . \mathrm{E} 12$ ea. or 2 for $£ 22$. BRANDENBURG Photomultiplier PSU. 19in. rack mounting. Metered, current
$374,374 \mathrm{R}$
$300 \mathrm{~V}-1 \mathrm{KV}$ at 5 mA .
375500 V 105 V at mA .
$37666 \mathrm{~V}-1 \mathrm{~K} 6 \mathrm{~V}$ at 10
Model 374R has reversible polarity op. All others have nega-
tive polarity op.
All models $£ 40$.
Some photo multiplier tubes available.
COUTANT ESM3: $105 / 115 / 220 / 240 \mathrm{~V}$ IP. Four separate ops:
5 V at 3 A stabilised with current limit, overvoltage crowbar protection and remote sensing.
± 12 to $\pm 15 \mathrm{~V}$ at 500 mA stabilised..
SPECIAL OFFER. 10MFD 500 v ECC 20p ea., $10,000 \mathrm{MFD} 16 \mathrm{v}$
Mullard 35p ea., 3,300 MFD 40 v Mullard 35 p ea. $10 \mathrm{\mu F} / 63 \mathrm{v}$ Mullard 35 p ea., $3,300 \mathrm{MFD} 40 \mathrm{~V}$ Mullard 35 p ea. 10 MF
MIMA polyester 10\% 50 p ea. Large quantities available.
ELECTROLYTIC CAPACITORS. Very large stock holding. Mostly YTT NN 2122 mEN 1235 types.
Please send for our electrolytic list, e.g.: $220 / 50 \mathrm{VA}, 2200 / 25 \mathrm{R}$,
$470 / 25 \mathrm{R}, 4700 / 25 \mathrm{~A}, 470 / 50 \mathrm{~A}, 2200 / 100 \mathrm{CAN}$.
CAPACITORS-DISC CERAMIC
motly ITT. Many high-voltage 210s, 8 KV , in $1 \mathrm{KV}, 2 \mathrm{n} 22 \mathrm{KV}, 10 \mathrm{n} 2 \mathrm{KV}$,
2020
Please send for our ceramic capacitor lists.

PYE HEAD CLEANING CAS-
SETTES. Brand new or boxed, 50p ea.
CASSETTE DECKS: With stereo heads, mechanically complete, but with no
electronics. Smart black
modern finish.
f5.00 modern finish. $£ 5.00$
We have VERY LARGE We have VERY LARGE
QUANTITIISS
0.14116 v disc ceramic by ITTM. $0.1 \mathrm{~h} / 16 \mathrm{v}$ disc ceramic by 17π.
Pitch 5 mm . Price $£ \mathbf{2 0} / \mathrm{f1} 1,000$. Brand PIHER PRESETS Very large stocks, PT10,
PT15 enclosed types Please PT15 enclosed types. Please
send for our preset list. Most
values $100 \mathrm{~K}-5 \mathrm{M}$ HEAVY DUTY 2P 1226600 V AC
8 P 10 A 380 AC 10p 12 A 600 ACAC
49 mm Fascia.

ROTARY POTS Good range stocked. Please phone your requirements.
Large stocks of the followingi + push switch 30 p
100 L
10iN ${ }_{2}^{2 \mathrm{~K} 2 \mathrm{LING}}$ CANNON 15 w sockets, ${ }^{30 \mathrm{p}}$ ype or Souvrian/McMúrdo Oaiss 60 ea. Also Cannon
ow plug, brand new, 60 e ea.

WELwYN STRAIN GAUGE WELWYN STRAIN GAUGE
(Precision micro-mea
surements). Romulus Michesurements). Romulus Miche
gan type MA-09-500B4-350 Our price $£ 1.25$ ea. List pric able. Large quantities avail $3 / 41 \mathrm{~S}$ Turn Ceremet Trimpot
100 k . 1 off price, 20p. By Beckman \& A.B.
REDPOINT HEATINK, Type TEDP 15 p ea. 1 off, price.
Discount on quantity Discount on quantity.
We have the following Welwyn $.1 \%$ Resistors available,
$2 \mathrm{~K}, 3 \mathrm{~K}, 10 \mathrm{~K}, 20 \mathrm{~K}, 30 \mathrm{~K}, 1 \mathrm{Meg}$ 2K, $3 \mathrm{~K}, 10 \mathrm{~K}, 20 \mathrm{~K}, 30 \mathrm{~K}, 1 \mathrm{Meg}$
Price 25p ea. Type 4802. BURROWS CONNECTOR (LH) 1701, 41c, 20p; Burrow
Connector (RH) $1201,4 \mathrm{LC}$ 25p. Large quantities avail able. WAY P.C. CONNECTOR,
METWAY
3 3-way typep $55 / 3 D S$, 10 p ea ITT TEMPKIT Electronic ther-
mostat ZBI. 5669 . Brand new. ${ }^{\text {£4 ea. }} 4$-WAY DPDT AND 5-WAY 4.WAY DPDT AND 5-WAY
DPDT DIL SWITCHES, by
ERG Components and CTS ERG Components and CTS.
Gold contacts $£ 1$ ea. Brand new and boxed. 12 v , 50 Wa. WRE ENDED NEONS £20/f1, 000.
SPECIALOFFE swech by C. \& K., Mini-toggle 3 Pc/o. switch by C. \& K.., 3 Pc
Long dolly or short, 50 ea

D TO A CONVERTERS
By Micro Consultants Ltd. 50Ω cable drive op. Linearity
0.25%, max. 0.125% typ. Settling time: 2 V step 70 ns ty.
 2MV step 50 S. colour television transmission standard. Di.
gain 0.5% dift. phase shift 0.5° types rad 802 and MC2208/8.
Unused. Ex-maker's pack. Unused. Ex-maker's. pack.

JUST IN!

SEMICONDUCTORS, BRAND NEW AND BOXED ...TEXAS, ANTI, SGS M SNETCD, NATIONAL, MOTOROLA, FERYOU'VE NEVER SEEN BEFOBE
integrated circuit

Type	Stock	Each	Type	Stock	Each
	12,400			7,000	${ }_{36} 20$
22	4,400	. 08	7415138	13,9	36 3
20	5,400	10	74.5175	3,800	. 68
7420	1,200		74LS192	29,200	. 50
7473	1,500	20	74LS193		65
7475	10,000	. 25	74LS221	0,800	65
7486	6,200	25	74LS251	600	. 65
	7.200	1.55	74LS273	10,000	75
74123	15,150	45	7445290	40,300	45
74125	000	26.	74LS293	35,000	45
74154	1,900	60	74LS390	2,100	. 65
75452	19,700	. 40	UA709	25,400	.25
744500	39,600	10	* A ${ }^{\text {a }}$	18,60	
74LS01	11,200	. 10	TMS1030	9,555	
74LS02	2,650	. 10	TS54036	12,100	1.00
74LSL10	14,500	20	MC3491	6,000	1.00
74LS30	9,600	. 12	40085BPC	23,000	POA
74LS73	18,600	. 20			
74LS75	4,750	. 25	* 4-bit Com	parator	
TRANSISTORS					
Type	Stock	Each	Type BC1 P4L	Stock 248.000	Each
2N1306	+10,400	POA	BER86	248,400	POA
	12,500	A	BD240C	16,200	22
FRB876	7,400	POA	BCY70	51,800	POA
FRB877	17,600	POA	2134	149,000	08
R1076	7,350	POA	ZTX542K	128,000	08

YES, IT'S TRUE! ... AND with do-it-yourself DISCOUNTS PLEASE RING...
$\star \star \star$ Before you grab calculator and chequebook, please
note:
AT THESE PRICES, MINIMUM ORDER ON SEMICS IS note: AT THESE PRCS
$£ 10$. . plus p. \& p. and V.A.T.
SPECIAL OFFER: Filmet
SC65 $1 \mathrm{M} \Omega$
0.1% metal film
$\underset{\text { resistors }}{\substack{\text { SC65 } \\ \text { ren }}} \begin{gathered}\text { metal film } \\ \text { 20p ea. }\end{gathered}$
CERMET PRESETS 15p ea. MINATURE AB16 POTS
PCB mounting
100 KLOGDG
220 K LOG DG
220 K LOG DG
10A 250 V AC ILLUMINATED
Red, DP ST $26 \times 30 \mathrm{~mm}$ rect.
Snap-in typ
75 p
Snap-in type
16A 250V AC ILLUMINATED
ROCKER SWITCH
(Amber). $14 \times 30 \mathrm{~mm}$ rectang-
ular snap-in type. SPST 30 p

This advertisement is mainly of our excess stock holding. We also have excellent stocks of semiconductors, hardware, cables, etc, etc. For further detailis send for our lists and retail price catalogue, phone or visit tour shop. All prices are exclusive
(and $P \& P$). Minimum Mail Order $£ 5+P \& P+$ VAT. Government departments, schools, colleges, trade and export welcome.

Appointments

Advertisements accepted up to 12 noon Monday, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 12$ per single col. centimetre (min .3 cm) BOX NUMBERS: E1 extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 4AS.) PHONE: JAYNE PALMER, $01-6613033$ (DIRECT LINE)
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

ALWAYS AHEAD WITH

 THE BEST!£5,000-£15,000
PDP 11: NOVA: ECLIPSE: Z80: 8080: 6800: BIT-SLICE: TTL
ECL: RADAR: SONAR: SATCOM: cessors: AR: SONAR: SARC, Phototypesetters: Wordpro cessors: Flight Simulators: ATE: Electro-Medical: Teletext
Data-Comms: Automation: Microwave? Where does your skill and interest lie
Design? Test? Service? Software? Consultancy?
Our clients are drawn from all sectors of industry: perhaps Research?

* There are opportunities for Managers, Project Managers, Engineers and Technicians.
* Most UK locations and some Overseas. ${ }^{\text {*. Make your first call count - Contact MIKE GERNAT on } 076384676 / 7 \text { (usually until } 8 \text { p.m.) }}$ ELEETRDMIC CDMPUTER AND MANAGEMEET APPDINTMENTS LIMITED

digitál EXPERIENGE?

 FIELD SUPPORT ANDPRODUCTION. VACAACIES PRODUCTION. AACANCIES
COMPTERS NC,
MEDICAL, VIDEO, ETC.
For free registration
045383836
$01-280$
0
LOGEX

Electronic Engineers What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 4000$ to $£ 12000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL
PERSONNEL SERVICES,
12 Mount Ephraim,
Tunbridge Wells,
Kent. TN4 8AS.
Tel: 089239388
TJB
lease send me a TJB Appointments Registration form
Name
Address

Service \& Installation Engineers

An Electronic Defence Systems company in the South of England is seeking Service \& edical el Engineers to be engaged on the installation and technical support of comp a
of up to approximately four months overseas. The successful candidates will have a good nowledge of semi-conductor circuitry, be qualififed to H.N.N.C. or equivalent standard and lease write quoting ref: WW/386 eqving full details modern high-power radar system Please write quoting ref: WW/386 giving full details of career to date, listing any
companies to whom you do not wish your application forwarded, to: John Maines Riley Advertising (Southern) Limited, Old Court House, Old Court Place,
Kensington, London, W8 4PD Kensington, London, W8 4PD.

A member of the Rex Stewart Group
LONDON BIRMINGAM BIISTOL EIINBURGH GLASGOW LONDON BIRMINGHAM BRIITOL EDINBURGH GLASGOW
LVERPOOL MANCHESTER NEWCASLE NOTTINGHAM PERTH

COLOUR VIDEO SERVICES

have a vacancy for an enthusiastic

TECHNICIAN (MOBILERADIO)

This subsidiary of a world-wide erroup mome Counts a diverse range

 Applications are invited from condidates qualified by experience of installation and service work in the mobile radio
telephone field and with the ability to develop as a member of a
dyno dynamictem.
Candidates
Candidates should be prepared to travel widely in the course of
these dutusis, a mobilile workshop being provided.
The benefits package includes a o ontributory
life assurance plus genernus relocation
Please write with full career detaill os otlolephenen for an
applicion form in strict confidence quoting ree WW/546
to: Ray Diamond
GERRARDS
Gerrard Recruitment Service,
Argyll Street, London W1V 2BQ. Tel: 01 -437 6816

$$
\begin{aligned}
& \text { HUMPHRIES VIDEO SERVICES } \\
& \text { have vacancies for the following positions: } \\
& \text { SENIOR ENGINEER } \\
& \text { ENGINEERS } \\
& \text { TECHNICAL OPERATORS }
\end{aligned}
$$

The Technical Manager
HUMPHRIIS VIDEOSERVICES LTD.
32 Eveline Road, Mitcham, Surrey CR4 3 BE (1155)

BROADCAST VIDEO ENGINEER

Experience in maintenance and operation, of 2in. quad
VTR is essential. Knowledge of 1 in . "C $\mathrm{C}^{\prime \prime}$ format VTR would be very useful. There would be opportunities to gain experience on flying spot telecine and other equip-
ment on the station. Salary between $£ 6,427$ and $£ 8,246$ ment on the station. Sa,
according to experience.

> Applicants please telephone: Mr. F. H. Weinel on $01-486$. 881 , or write to: OLOUR VIDEO SERVICES LIMITED 22-25 Portman Close, Baker Street, London, W. 1

$$
\begin{aligned}
& \text { ELECTRONICS TECHNICIAN }
\end{aligned}
$$

URGENT

ELECTRONICS ENGINEERS FOR HUNDREDS OF VACANCIES INCLUDING.

Charles Airey Associates

Blectronics

 R\&D£7,999

Join us in the forefront of technology

Take your pick

 HF-VHF-UHFMicrowave Optics \& Acoustics A challenging and full career in Government Service Candidates, normally aged under 30 , should have a good honours degree or equivi. alent in a relevant subject, but any candidates about to graduate may be considered. Appointments as Higher Scientific
Officer ($6,075-£ 7,999$) or Scientific Office (£4,805-£6,480) according to qualifications and experience. Promotion prospects. Please apply for an application form to
the Recruitment Officer (Dept I.E. 1) the Recruitment Officer (Dept I.E.1), Hanslope Park, Milton Keynes MK19 7BH.

GOVERNMENT OF DUBAI
DUBAI RADIO AND COLOUR TELEVISION TELEVISION ENGINEERING DEPARTMENT

1. TELEVISION STUDIO ENGINEER
 Units. Candidates should preferably have some experieince of Memory
Modulated Lighting Systems. All studios are equipped with EMI 2005
 .

2. V.T.R. ENGINEER

To be responsible to the Chief Engineer for the maintenance of all VTR
Equipments witho the Studio Complex and Outside Broadcast Unit. Equipments within the Studio Complex and Outside Broadcast Unit.
Candidates should preferably have experience in AMPEX 1200B, AVR2,
VPR2 Candidates should prefereably have experience in AMPEX 1200 E
VPR2 and VPRR2 machines.
Salary shall be sterling $£ 13,000-\mathrm{E} 14,000$ depending on experience.

3. LIGHTING DIRECTOR

To be responsible to the Chief Engineer for the lighting of all drama and
light entertainment productions and shall act in the capacity of Technical Manager.
Salary shall be sterling $£ 17,000-£ 18,000$ depending on experience.

Salaries quoted are annual and are tax. free. The initial contract shall be
for a period of 2 years and funther deatrils reearding conditions of selvice
 Aplicitions, which shall le treated with the strictest confidence, should
be sent, accompanied with fuli c.v. and U.K. telephone contact, to: Chief Engineer - Television
DUBAI RADIO AND COLOURTV
Dubai, U.O. Box 1695 (ted Arab Emirates
(1179)

LINK

 ienced engineers to fill the forlowing，demanding positions，both
of which offer a high degree of job satisfaction．

SALES SUPPORT ENGINEER－ VISION MIXERS
We need an electronic engineer with a background in TV studio
engineering to work on the com missioning，acceptance，demon－

 the position would nemesessita
Minimum age would be 28 ．

Experienced engineers，to be involved in the design of TV studio products，incluciding a new range of colour cameras，using the very latest analogue
and
of the fiata tecchniqupes．You will have the opportunity to see your designs made in volume production，fuffiling the high technology requirements We are looking for engineers，minimum age 25，who are qualified to degree level and who have at least
equipment．A knowledge of microprocessor techniques and video engineering would be added advantages． Salaries offered are extremely competitive and are backed by fre
assitance with relocation wivi beq iven where appoprotat oh hel
easy access to London and major towns in the South of England．

PRODUCTION ENGINEER

We have a vacancy for an Engineer with experience of quartz crystal
production．The successful applicant will be responsible for manufactur－ ing methods and the maintenance of top standards in our Southampton
factorn ract
Education to H．N．C．standard is desirable，a practical approach and the
abiity to work without supervision is essential．
Above－average salary for the right applicant，
necessary and normal company benefits．

> Aply in writing to
> $\begin{aligned} & \text { The Persontel Director } \\ & \text { LOC CRYTAL } \\ & \text { LLEECTRONICS }\end{aligned}$
> $\begin{aligned} & \text { 29 Market Street, Crew } \\ & \text { Somerset, TA18 JUU }\end{aligned}$
－\triangle DTA CAPITAL HOÜSE STREET LONDON W1P 1HG
THE UK＇s No． 1 ELECTRONICS AGENCY
Design，Dev．and Test to $£ 10,000$
Ask for Brian Corrwell
SALES to $£ 12,000$ plus car
SALES to $£ 12,000$ plus car
Ask for Maurice Wayne
Fiéco SERVICE to E10，000 plus car
Ask for Paul Wallis
We have vacancies in ALL AREAS of the UK Telephone：01－6375551（3 lines） （291）

DESIGN AND DEVELOPMENT ENGINEER－VIDEO ele hat

Walworth Industrial Estate

Gresham Executive Appointments D．E．C．EXPERIENCE？

 SALES ENGINEER SENIOR SOFTWARE ENGINEER APPLICATIONS ENGINEER DEVELOPMENT ENGINEER

Contact Keith Diprose on $021-643231$
GRESHAM EXECUTVE APPOINTMENTS 5th Floor，New Street Chambers
67 a New Street，Birmingham

The Middlesex Hospital，London W1N 8AA JUNIOR MEDICAL PHYSICS TECHNICIAN Applications are invited for the above post in the Department of Clinical

 part in patient－monitoring activities in the Intensive Care Unit and the
perating Theatres．
Day Ree

 8333 Ext ． 7462 ．

DEVELOPMENT OPPORTUNITIES
 COMMUNICATIONS

WEST SUSSEX

Our Research \＆Development Laboratories in Crawley，West Sussex，are actively involved in
developing the Communications technology and equipment of the future．
To meet the demands of our expanding
programme，we are currently seeking addition
R\＆D personnel with proven expertise in any of
the following areas：
HF Transmitters and Linear
Wideband Amplifiers
VHF／Mobile Radio System
Signal Processing \＆Control
Signal Processing \＆Control
Communications Hardware／Software
All positions are at Senior／Principal
Engineer level and we offer highly competitive
salaries together with attractive benefits． salaries together with attractive benefits． If you are seeking a progressive
Development opportunity，make this your next move．For further details and application forms please telephone or write to

David Bird，Personnel Department，
Rediffusion Radio Systems Limited
Rediffusion Radio Systems Limited，
Broomhill Road，London，SW18 4JQ．
Telephone：01－874 7281

REDIFFUSION

great to communicate with

RESEARCH ASSISTANT／

 DEMONSTRATORSDEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING Good honours graduates desirous of working for a higher
degree are invited to apply for research posts in the following
areas

areas

1）Three－dimensional television
2）Photovoltaic cells using organic semiconductors
3）Bipolar charging of powders for use in electrostatic powder coating．

Salary Currently：£4683－£4884－f5 ©5466 from 1 September， 1981
Further details of project and form of application available from
The Assistant Director
The Assistant Director（Administration）Trent Polvtechni，
Burton Street，Nottingham NG1 4BU．Applications to be
returned as soon as possible．

Air Traffic Engineers

The Civil Aviation Authority has vacancies for men and women

 as Air Traftic Engineers Grade 2 in its TelecommunicationsDivision offering a variety of work on a wide range of electronic Division oftering a avariety of work on a wide range of electronic
systems and specialised equipments． Air Traffic Engineers Grade e are involved in the installation and
maintenance of radio，radar，air navigational and landing aids， and data processsingo，systerms．Staff are employed at some Civiil and ata prosessing systers．Staff are employed at some Civ
Airports，Air Traffic Control Centres and Madar Stations and other locations throughout the UK but at present moss of the
vacancies are likely to be in the South of England with a few
vacancies vacancies are likely to be in the
vacancies elsewhere in the UK．
Qualifications and Experience
You should be at least 20 years of age and have obtained either
he O．N．C．（Eng．）with an electronic bias or C．\＆G． the O．N．C．（Eng．）with an electronic bias or C．\＆G．
Telecommunications Technician T3 Certificates or other similar
Telecommunications Technician $\mathbf{T 3}$ Certificates or
technical qualifications．
Skilled working experience in radio，radar or data processing is
Skilled working exper
Salary
Salaries are on an incremental scale e $£ 5,683$－$£ 8,783$ ．Posts in the
London area attract an additional allowance（Inner London £1，082－Outer London $£ 452$ ）．Grade 1 posts（maximum salary
$£ 10,610$ are normally filled by promotion from Grade 2．
－ーーーーーーーーーーーーーーース 2 ．
For full details and an application form complete and
send the coupon to：CAA，Personnel（Tess），RoomT 1206， CAA House，45－59 Kingsway，London，WC2B GTE．
Name．

Civil Aviation Authority

IMPORTANT 4-DAY SALE BY AUCTION

TELEVISION MANUFACTURER'S

EXCELLENT MODERN MACHINERY \& EQUIPMENT at the works ERNESETTLE LANE, PLYMOUTH at 10 a.m. each day

DAY ONE

TUESDAY, 30 JUNE, 1981 WIRE WOUND COMPONENTS MANUFACTURING PLANT
including:
 WIIDERS WINDERS by Ko-lectric, Avo \& Douglas, ARTOS WIRE
BENCH COL
CUITHR AND 1980 ZEVATRON TL3 DiP SOLDER MACHINE, FLOW SOLDER MACHINES BARLOW WHITNEY ELECTRIC CURING OVENS \& WAX IMPREGNATIONPLANTS DALE 255 KVA DIESEL GENERATOR, BROOMWADE V 300 F2 AIR COM-
PRESSO
LANSIIG-BAGNALL 2OOOLBELECTRIC FORK LIFT TRUCK
ANE ETORACCLIEANING EQUIPMENT, BENCHES, STORAGE BINS \& FACTORY FURNITURE
EXIENIVE RANGE OF MODERN CANTEEN FURNITURE AND KITCHEN
EQUIPMENT

DAY TWO

WEDNESDAY, 1 JULY, 1981
TELEVISION MANUFACTURING PLANT
MACHINE TOOLS, OFFICE FURNITURE
FORK LIFT TRUCKS \& MOTOR VEHICLES

 ines ber belt, gravity roller and glidewheel conveyor YSTTELS
LOWS LEVEAROUSEL CHAIN CONVEYORS造 RENCH \& PILLAR DRILLS by Arboga, Kerry, Meddings, Progress and EDLAARDS SHEET METALWORKING MACHINERY, GUYSON SAND BLAST CAB NAET
TIENNAEGER COLD SAW, VIRAX GOA PIPE THREADER, CHAIN HOISTS
SEYMOUE 200LB VERTICAL PLASTICS INJECTION MOULDING MACHINE AVERY WEIGHING MACHINES TH 330 KVA DIESEL GENERATOR, BROOMWADE V500 AIR COMPRES PERMUTIT CTP WATER TREATMENT PLANT, DEXION SPEEDLOCK PAL-
ETRACKING

 CORD CORTINA 1.682 .0 GL ESSTATE CARS
OORD 2817 ARTIC UNITS, D 1311 RIGID AND TRANSIT COMMERCIAL VEHCLES \& LPG FRRK LIFT TRUCKS \& PALLET CONVEYORS by BT
ELCTTEC
ROIatruc, Coventry Climax, Lansing Bagnall, Linde and Montgomerie

DAY THREE

MACHINE TOOLS, PLASTICS \& SHEET METALWORKiNG MACHINERY MACHINE EQUIPMENT ENGINEERS' STORES \& INSPECTION EQUIPMENT PCB PHOTOGRAPHIC AND FACTORY EQUIPMENT

 BENNH \& PILLAR DRILLS, BENCH SAWS, STARTRITE 316 VER
BNEDSANANN BR2 TURRET PRESSES, INTERWOOD OFL ROUTER BANDSAW N BR2 TURRET PRESSES, INTERWOOD OFL ROUTER
WIIDEMEMAN
WICKMA EDM1 SPARK EROSION MACHINE

 DEE DUST COLLECTORS, ballard degreasing plant, aew
STOVING OVEN Micrometers, Vernier Calipers \& Height Gauges, Bench Vices, Surface
Plates, Angle Plates, Rotary Tables, Machine Vices, Electric \& Pneumatic
 PRINTER PCB DRYER, LABORATORY BENCHING, DEXION SPEEDLOCK
PAEDINAR P
PALET RACKING

DAY FOUR
 FRIDAY 3 JULY 198

MODERN OFFICE FURNITURE \& EQUIPMENT
 Kuhlmann
FIL
HUND
CABINETS, LIBRARY SHELVING, CUPBOARDS, OFFICE

REARLE EV50 AIR CONDITIONING UNITS By Brandenberg, Bruel \& Kjaer, General Radio, Hewlett-Packard, insley, Wavetek and Wayne-Kerr

 Thest Meters, Variable Resistors, Isolating Transformers, Cathode Ray
Tubes
Tubst
Etc. RF INTEREERENCE BOOTHS, LYONS STS AUTO VOLTAGE STABLIS
ISION ENGINERANG COMPARASCOPE AXIONMICRO WEDEERS RANK BUSH MURPPHG INSULATION \& PULSED FLASH TESTERS

Weatherall
 Green \& Smith

Classified TRANSFORMERS

CAPACITY	bLE
PCB ASSEMBLY capacity avallable Low or high volume, single or double and Find out how we can help you with your tw electronics lto. BuRY ST.	I.H.S. SYSTEMS Due to expansion of our manufacturing facilities we are able to under- take assembly and testing of circuit boards or complete units in addition to contract development. We can produce, test and calibrate to a high standard digital analogue and thousands. Telephone to arrange for one of our engineers to call and discuss your requirements, or send full details for a prompt quiotation. TEL. 01-253 4562 or reply to Box No. WW 8237
(tart assmblers and	
ELECRROMIC DESIGN SERV crimult dosign and devalop	
and proootype producidon welcome. (086)	
SERVICES	
CIRCOLEC THE COMPLETE ELECTRONIC MANUFACTURING SERVICE Let us realise all or any part of your project from prototypes to production, from artwork design and component sourcing, through assembly and test to final quality assurance, packing and delivery We also provide a test, repair and modification service to suit your individual requirement.	
Free Offer! Ring for details of a free introductory offer to our sub-contract PCB assembly service. CIRCOLEC FREEPOST (no postage required) London SW17 8BR	

 Hz

 MARCO TRADING

Phone your Classpifieds
to
JAYNE
PALMER

CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BEELOW

To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate f2 PER LINE. Average six words per line.
Minimum f10 (prepayable).
- Name and address to be included in charge if
- Box No. Allow two words plus $£ 1$.

Cheques, etc., payable to "IPC Business
Press Ltd." and cross "\& Co."

PLEASE WRITE IN BLOCK LETTERS. CLÄSSIFICATION
NUMBER OF INSERTIONS

SAFGAN presents DT-400 series from $£ 169+$ VAT high-quality DUAL TRACE oscilloscopes A BRITISH PRODUCT EVERYONE CAN AFFORD
Model DT-410 DUAL TRACE $5 \mathrm{mv} / \mathrm{div} 10 \mathrm{MHZ} @ £ 169+$ VAT Model DT-412 DUALTRACE $-5 \mathrm{mv} / \mathrm{div} \cdot 12 \mathrm{MHz} @ £ 175+$ VAT SPECIFICATION FOR ALL MODELS

 $\times 5$ Expansion to 100 ns div
$\times 5$ Mutipieie to $15 /$ div

- $\frac{100 \mathrm{mV}}{2} \mathrm{Mosuation}$
\star Cal outpit/ $/$ robe compensation.
\star Graticule
Ilue ruled 8×10 div (G)
* SIZE: H21

WW - O5O FOR FURTHER DETAILS

\rightarrow

\square

INDEX TO ADVERTISERS JULY

Appointments Vacant Advertisements appear on page 119-127

Page	Page	PAGEE
		${ }_{\text {Pasall }}^{\text {Pecerronics LId. }}$
		PM Componens LId
		Compuing
Bach-Simpson (U.K.) Ltd \qquad .116 . .90		Radio Component Sp Electronics
	Henris Raio.e...	RST V
	Hifi Yearbook 1881.	
	Heplecrenis	
Castonics crandiss	${ }_{\text {IM }}$	
Chilmead Lid.us...)	Interace Oariz Devices LTd.	
	Irvine Bu Siness sssiems......	Sinclir
Clef Prodicts (rlectronics)	Keithey Ynstrumens Ld	Soiman
	Kelsey Acoustics Lt	
${ }^{\text {CT E Electronics Action) }}$ Lid.		Sters
Sileme	Maplin Electono Supplies Ld.).	
Display Electronics	${ }_{\text {Mc }}$	Teleman Producics Lid.
	${ }_{\text {M }}^{\text {Milwicich Computer Co. }}$	
	Milwadd GF.F.Elecranic Components LId.	
Electroverut Lidmen		
(eale		
Faircest Engineerin Ltad......	Machine end Tool UK LId.................... ${ }^{12}$	
		Zaerix Electronis

OUERSEAS ADVERTISEMENT

Hungary: Mrs Edit, Baiusz, Hungexpo Adverising
Angany
Teleonotone

 ain

[^4]

[^0]:

[^1]:

[^2]:

[^3]:[^4]: MAYFLOWER HOUSE, ARMADA WAY, PLYMOUTH, DEVON TELEPHONE O752

